elasticsearch DSL语句

目录

  • 一、DSL查询文档
    • 1.1 DSL查询分类
    • 1.2 全文检索查询
    • 1.3 精确查询
    • 1.4 地理坐标查询
    • 1.5 复合查询
      • 1.5.1 相关性算分
      • 1.5.2 算分函数查询
      • 1.5.3 布尔查询
  • 二、搜索结果处理
    • 2.1 排序
    • 2.2 分页
    • 2.3 高亮
    • 2.4 总结
  • 三、RestClient查询文档
    • 3.1 查询所有
    • 3.2 match查询
    • 3.3 精确查询
    • 3.4 布尔查询
    • 3.5 排序、分页
    • 3.6 高亮

一、DSL查询文档

1.1 DSL查询分类

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all
  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:
    • match_query
    • multi_match_query
  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:
    • ids
    • range
    • term
  • 地理(geo)查询:根据经纬度查询。例如:
    • geo_distance
    • geo_bounding_box
  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:
    • bool
    • function_score

查询的语法基本一致:

GET /indexName/_search
{
  "query": {
    "查询类型": {
      "查询条件": "条件值"
    }
  }
}

1.2 全文检索查询

常见的全文检索查询包括:

  • match查询:单字段查询
  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

GET /indexName/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT"
    }
  }
}

mulit_match语法如下:

GET /indexName/_search
{
  "query": {
    "multi_match": {
      "query": "TEXT",
      "fields": ["FIELD1", " FIELD12"]
    }
  }
}

在这里插入图片描述

在这里插入图片描述
可以看到,两种查询结果是一样的,为什么?

因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。

但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。

1.3 精确查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确值查询
  • range:根据值的范围查询

1.term查询
语法:

// term查询
GET /indexName/_search
{
  "query": {
    "term": {
      "FIELD": {
        "value": "VALUE"
      }
    }
  }
}

在这里插入图片描述
2. range查询
语法:

// range查询
GET /indexName/_search
{
  "query": {
    "range": {
      "FIELD": {
        "gte": 10, // 这里的gte代表大于等于,gt则代表大于
        "lte": 20 // lte代表小于等于,lt则代表小于
      }
    }
  }
}

在这里插入图片描述

1.4 地理坐标查询

所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-queries.html

1.矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:
在这里插入图片描述

查询时,需要指定矩形的左上、右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

语法如下:

// geo_bounding_box查询
GET /indexName/_search
{
  "query": {
    "geo_bounding_box": {
      "FIELD": {
        "top_left": { // 左上点
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": { // 右下点
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}

2.附近查询
附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。
换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:
在这里插入图片描述
语法:

// geo_distance 查询
GET /indexName/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "FIELD": "31.21,121.5" // 圆心
    }
  }
}

附近15km的酒店信息
在这里插入图片描述

1.5 复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

1.5.1 相关性算分

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

例如,我们搜索 “虹桥如家”,结果如下:

[
  {
    "_score" : 17.850193,
    "_source" : {
      "name" : "虹桥如家酒店真不错",
    }
  },
  {
    "_score" : 12.259849,
    "_source" : {
      "name" : "外滩如家酒店真不错",
    }
  },
  {
    "_score" : 11.91091,
    "_source" : {
      "name" : "迪士尼如家酒店真不错",
    }
  }
]

1.5.2 算分函数查询

1.语法说明

在这里插入图片描述
function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
  • 过滤条件:filter部分,符合该条件的文档才会重新算分
  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
    • weight:函数结果是常量
    • field_value_factor:以文档中的某个字段值作为函数结果
    • random_score:以随机数作为函数结果
    • script_score:自定义算分函数算法
  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
    • multiply:相乘
    • replace:用function score替换query score
    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
  • 2)根据过滤条件,过滤文档
  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

示例:
需求:给“如家”这个品牌的酒店排名靠前一些

GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {  .... }, // 原始查询,可以是任意条件
      "functions": [ // 算分函数
        {
          "filter": { // 满足的条件,品牌必须是如家
            "term": {
              "brand": "如家"
            }
          },
          "weight": 2 // 算分权重为2
        }
      ],
      "boost_mode": "sum" // 加权模式,求和
    }
  }
}

1.5.3 布尔查询

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤。
每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。


需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
  • 其它过滤条件,采用filter查询。不参与算分

语法:

GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {"city": "上海" }}
      ],
      "should": [
        {"term": {"brand": "皇冠假日" }},
        {"term": {"brand": "华美达" }}
      ],
      "must_not": [
        { "range": { "price": { "lte": 500 } }}
      ],
      "filter": [
        { "range": {"score": { "gte": 45 } }}
      ]
    }
  }
}

bool查询有几种逻辑关系?

  • must:必须匹配的条件,可以理解为“与”
  • should:选择性匹配的条件,可以理解为“或”
  • must_not:必须不匹配的条件,不参与打分
  • filter:必须匹配的条件,不参与打分

二、搜索结果处理

2.1 排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

1.普通字段排序

keyword、数值、日期类型排序的语法基本一致。
语法:

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "FIELD": "desc"  // 排序字段、排序方式ASC、DESC
    }
  ]
}

排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推

在这里插入图片描述

2.地理坐标排序

地理坐标排序略有不同。
语法:

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "_geo_distance" : {
          "FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点
          "order" : "asc", // 排序方式
          "unit" : "km" // 排序的距离单位
      }
    }
  ]
}

示例:
假设我的位置是:31.034661,121.612282,寻找我周围距离最近的酒店。
在这里插入图片描述

2.2 分页

1.基本的分页

语法:

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。

针对深度分页,ES提供了两种解决方案,官方文档:

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
  • scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用。

分页查询的常见实现方案以及优缺点:

  • from + size:
    • 优点:支持随机翻页
    • 缺点:深度分页问题,默认查询上限(from + size)是10000
    • 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索
  • after search:
    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:只能向后逐页查询,不支持随机翻页
    • 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页
  • scroll:
    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:会有额外内存消耗,并且搜索结果是非实时的
    • 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。

2.3 高亮

我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:
在这里插入图片描述
语法:

GET /hotel/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询
    }
  },
  "highlight": {
    "fields": { // 指定要高亮的字段
      "FIELD": {
        "pre_tags": "<em>",  // 用来标记高亮字段的前置标签
        "post_tags": "</em>" // 用来标记高亮字段的后置标签
      }
    }
  }
}

注意:

  • 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
  • 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
  • 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false
    在这里插入图片描述

2.4 总结

查询的DSL是一个大的JSON对象,包含下列属性:

  • query:查询条件
  • from和size:分页条件
  • sort:排序条件
  • highlight:高亮条件

在这里插入图片描述

三、RestClient查询文档

3.1 查询所有

在这里插入图片描述
解析响应,完整代码:

@Test
void testMatchAll() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    request.source()
        .query(QueryBuilders.matchAllQuery());
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);

    // 4.解析响应
    handleResponse(response);
}

private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        System.out.println("hotelDoc = " + hotelDoc);
    }
}

3.2 match查询

全文检索的match和multi_match查询与match_all的API基本一致。差别是查询条件,也就是query的部分。

同样是利用QueryBuilders提供的方法,语法:
在这里插入图片描述
示例:

@Test
void testMatch() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    request.source()
        .query(QueryBuilders.matchQuery("all", "如家"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

3.3 精确查询

精确查询主要是两者:

  • term:词条精确匹配
  • range:范围查询

语法:
在这里插入图片描述

3.4 布尔查询

布尔查询是用must、must_not、filter等方式组合其它查询,代码示例如下:
在这里插入图片描述
可以看到,API与其它查询的差别同样是在查询条件的构建,QueryBuilders,结果解析等其他代码完全不变。

完整代码:

@Test
void testBool() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.准备BooleanQuery
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    // 2.2.添加term
    boolQuery.must(QueryBuilders.termQuery("city", "杭州"));
    // 2.3.添加range
    boolQuery.filter(QueryBuilders.rangeQuery("price").lte(250));

    request.source().query(boolQuery);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

3.5 排序、分页

搜索结果的排序和分页是与query同级的参数,因此同样是使用request.source()来设置。
语法:
在这里插入图片描述
完整代码:

@Test
void testPageAndSort() throws IOException {
    // 页码,每页大小
    int page = 1, size = 5;

    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchAllQuery());
    // 2.2.排序 sort
    request.source().sort("price", SortOrder.ASC);
    // 2.3.分页 from、size
    request.source().from((page - 1) * size).size(5);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

3.6 高亮

高亮的代码与之前代码差异较大,有两点:

  • 查询的DSL:其中除了查询条件,还需要添加高亮条件,同样是与query同级。
  • 结果解析:结果除了要解析_source文档数据,还要解析高亮结果

语法:
在这里插入图片描述

完整代码:


@Test
void testHighlight() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchQuery("all", "如家"));
    // 2.2.高亮
    request.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

高亮结果解析

在这里插入图片描述
完整代码:

private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        // 获取高亮结果
        Map<String, HighlightField> highlightFields = hit.getHighlightFields();
        if (!CollectionUtils.isEmpty(highlightFields)) {
            // 根据字段名获取高亮结果
            HighlightField highlightField = highlightFields.get("name");
            if (highlightField != null) {
                // 获取高亮值
                String name = highlightField.getFragments()[0].string();
                // 覆盖非高亮结果
                hotelDoc.setName(name);
            }
        }
        System.out.println("hotelDoc = " + hotelDoc);
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/202745.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

PyMuPDF---Python处理PDF的宝藏库详解

1、PyMuPDF简介 1.1 介绍 在介绍PyMuPDF之前&#xff0c;先来了解一下MuPDF&#xff0c;从命名形式中就可以看出&#xff0c;PyMuPDF是MuPDF的Python接口形式。 MuPDF MuPDF 是一个轻量级的 PDF、XPS和电子书查看器。MuPDF 由软件库、命令行工具和各种平台的查看器组成。 …

C语言进阶之笔试题详解(2)

前言 这里的内容包括二维数组笔试题和指针笔试题&#xff0c;供给读者对这部分知识进行加深和巩固。 ✨ 猪巴戒&#xff1a;个人主页✨ 所属专栏&#xff1a;《C语言进阶》 &#x1f388;跟着猪巴戒&#xff0c;一起学习C语言&#x1f388; 目录 前言 笔试题 二维数组 题目…

借助文档控件Aspose.Words,在 C# 中比较两个 PDF 文件

在当今的数字世界中&#xff0c;管理和比较文档是一项至关重要的任务&#xff0c;尤其是在商业和法律领域。在 C# 中处理 PDF 文档时&#xff0c;Aspose.Words for .NET 提供了用于比较 PDF 文档的强大解决方案。在这篇博文中&#xff0c;我们将探讨如何在 C# 应用程序中比较 P…

MySQL进阶-读写分离

✨作者&#xff1a;猫十二懿 ❤️‍&#x1f525;账号&#xff1a;CSDN 、掘金 、语雀 、Github &#x1f389;公众号&#xff1a;猫十二懿 一、MySQL 读写分离介绍 读写分离,简单地说是把对数据库的读和写操作分开&#xff0c;以对应不同的数据库服务器。主数据库提供写操作&…

从零开始的c语言日记day38——数组参数,指针参数

一维数组传参 要把数组或者指针传给函数&#xff0c;那函数参数如何设计&#xff1f; 上面各写法有问题嘛&#xff1f; 第一个没问题 第二个没问题 第三个没问题 第四个没问题 第五个解析&#xff1a;定义int*arr2[20]为20个int*类型的数组&#xff0c;test2之后用的是ar…

Kubernetes(K8s)资源管理-03

资源管理 资源管理介绍 在kubernetes中&#xff0c;所有的内容都抽象为资源&#xff0c;用户需要通过操作资源来管理kubernetes。 kubernetes的本质上就是一个集群系统&#xff0c;用户可以在集群中部署各种服务&#xff0c;所谓的部署服务&#xff0c;其实就是在kubernetes集…

NoSQL大数据存储技术思考题及参考答案

思考题及参考答案 第1章 绪论 1. NoSQL和关系型数据库在设计目标上有何主要区别&#xff1f; (1)关系数据库 优势&#xff1a;以完善的关系代数理论作为基础&#xff0c;具有数据模型、完整性约束和事务的强一致性等特点&#xff0c;借助索引机制可以实现高效的查询&#xf…

Clickhouse Join

ClickHouse中的Hash Join, Parallel Hash Join, Grace Hash Join https://www.cnblogs.com/abclife/p/17579883.html 总结 本文描述并比较了ClickHouse中基于内存哈希表的3种连接算法。 哈希连接算法速度快&#xff0c;是最通用的算法&#xff0c;支持所有连接类型和严格性设…

TCP/IP封装

数据如何通过网络发送&#xff1f;为什么 OSI 模型需要这么多层&#xff1f; 下图显示了数据在网络传输时如何封装和解封装。 步骤1&#xff1a;当设备A通过HTTP协议通过网络向设备B发送数据时&#xff0c;首先在应用层添加HTTP头。 步骤2&#xff1a;然后将TCP或UDP标头添加…

Hadoop入门学习笔记

视频课程地址&#xff1a;https://www.bilibili.com/video/BV1WY4y197g7 课程资料链接&#xff1a;https://pan.baidu.com/s/15KpnWeKpvExpKmOC8xjmtQ?pwd5ay8 这里写目录标题 一、VMware准备Linux虚拟机1.1. VMware安装Linux虚拟机1.1.1. 修改虚拟机子网IP和网关1.1.2. 安装…

Modbus TCP工业RFID读写器的选型要点

Modbus TCP工业RFID读写器是一种采用Modbus TCP通信协议的RFID读写器。它可以通过TCP/IP网络与计算机或其它设备进行通信&#xff0c;实现远程读取和写入RFID标签数据的目的。 与传统的RFID读写器相比&#xff0c;Modbus TCP工业RFID读写器具有更远的读写距离、更高的读写灵敏度…

uniapp如何与原生应用进行混合开发?

目录 前言 1.集成Uniapp 2.与原生应用进行通信 3.实现原生功能 4.使用原生UI组件 结论: 前言 随着移动应用市场的不断发展&#xff0c;使用原生开发的应用已经不能满足用户的需求&#xff0c;而混合开发成为了越来越流行的选择。其中&#xff0c;Uniapp作为一种跨平台的开…

系统设计概念:生产 Web 应用的架构

在你使用的每个完美应用程序背后&#xff0c;都有一整套的架构、测试、监控和安全措施。今天&#xff0c;让我们来看看一个生产就绪应用程序的非常高层次的架构。 CI/CD 管道 我们的第一个关键领域是持续集成和持续部署——CI/CD 管道。 这确保我们的代码从存储库经过一系列测试…

开发知识点-Maven包管理工具

Maven包管理工具 SpringBootSpringSecuritydubbo图书电商后台实战-环境设置&#xff08;JDK8, STS, Maven, Spring IO, Springboot&#xff09;点餐小程序Java版本的选择和maven仓库的配置视频管理系统&&使用maven-tomcat7插件运行web工程SpringTool suite——maven项目…

promis.all的异步使用

基础 参考 https://blog.csdn.net/qq_52855464/article/details/125376557 简单来说 Promise.all是处理接口返回方法异步的&#xff0c;能够使得接口的获取顺序得到控制&#xff0c;不会出现数据为空的情况 使用 先执行jianshigetGroups->groupIds-> const promises2 …

RNN-T Training,RNN-T模型训练详解——语音信号处理学习(三)(选修三)

参考文献&#xff1a; Speech Recognition (option) - RNN-T Training哔哩哔哩bilibili 2020 年 3月 新番 李宏毅 人类语言处理 独家笔记 Alignment Train - 8 - 知乎 (zhihu.com) 本次省略所有引用论文 目录 一、如何将 Alignment 概率加和 对齐方式概率如何计算 概率加和计…

什么是PDM图纸管理系统?PDM图纸管理系统主要功能有哪些?

PDM (Product Data Management) 图纸管理系统 是用于管理企业内部图纸和相关文件的软件系统。它提供了一个集中存储、组织和跟踪图纸和文件的平台&#xff0c;以确保团队成员能够轻松访问、共享和更新所需的工程设计和制造数据。 彩虹PDM系统|PDM产品数据管理系统|BOM管理|工艺…

代码浅析DLIO(三)---子图构建

0. 简介 我们刚刚了解过DLIO的整个流程&#xff0c;我们发现相比于Point-LIO而言&#xff0c;这个方法更适合我们去学习理解&#xff0c;同时官方给出的结果来看DLIO的结果明显好于现在的主流方法&#xff0c;当然指的一提的是&#xff0c;这个DLIO是必须需要六轴IMU的&#x…

问题记录-maven依赖升级或替换(简单版)

问题背景 项目被检测到有高危漏洞&#xff0c;需要对部分jar进行升级。以一个jar为例记录一下升级过程。 1 找到高危漏洞的包 如果装了maven helper插件则可以在下面查看当前模块依赖包 2 使用maven命令 执行下面这个命令&#xff0c;会将当前项目的信息打印出来&#xff0c;…

基于MYSQL+Tomcat+Eclipse开发的超市订单管理系统

基于MYSQLTomcatEclipse开发的超市订单管理系统 项目介绍&#x1f481;&#x1f3fb; 该系统运行需要基于JDK7来进行运行 超市订单管理系统是一款针对超市订单进行管理的软件&#xff0c;旨在提高订单处理效率&#xff0c;降低管理成本。该系统包括以下功能模块&#xff1a; 系…