【探索Linux】—— 强大的命令行工具 P.18(进程信号 —— 信号捕捉 | 信号处理 | sigaction() )

在这里插入图片描述

阅读导航

  • 引言
  • 一、信号捕捉
    • 1. 内核实现信号捕捉过程
    • 2. sigaction() 函数
      • (1)函数原型
      • (2)参数说明
      • (3)返回值
      • (4)函数使用
  • 二、可重入函数与不可重入函数
    • 1. 可重入函数条件
    • 2. 不可重入函数特征
  • 三、volatile关键字
  • 温馨提示

引言

在Linux系统中,信号是进程之间通信的重要方式之一。前面的两篇文章已经介绍了信号的产生和保存,本篇文章将进一步探讨信号的捕捉、处理以及使用sigaction()函数的方法。信号捕捉是指进程在接收到信号时采取的行动,而信号处理则是指对接收到的信号进行适当的处理逻辑。通过使用sigaction()函数,我们可以在程序中设置对特定信号的处理方式,从而实现更加灵活和精确的信号处理机制。本文将详细介绍信号捕捉的原理和使用方法,以及sigaction()函数的具体用法,帮助读者更好地理解和应用信号处理的相关知识。无论是开发基于Linux的应用程序,还是进行系统级编程,信号处理都是一个至关重要的主题,相信通过学习本文,您将对信号处理有更深入的了解。

一、信号捕捉

1. 内核实现信号捕捉过程

当信号的处理动作是用户自定义函数,并且在信号到达时调用该函数,这被称为捕捉信号。由于信号处理函数的代码运行在用户空间,处理过程可能会比较复杂,下面举一个例子来说明:

  1. 用户程序注册了处理函数sighandler来捕捉SIGINT信号。
  2. 当前正在执行main函数时,若发生中断或异常导致切换到内核态。
  3. 在中断处理完成后,在返回用户态执行main函数之前,检测到有SIGINT信号递达。
  4. 内核决定在返回用户态后,不恢复main函数的上下文继续执行,而是调用sighandler函数。sighandler函数和main函数使用不同的堆栈空间,它们之间不存在调用和被调用的关系,是两个独立的控制流程。
  5. sighandler函数执行完毕后,会自动执行特殊的系统调用sigreturn,再次进入内核态。
  6. 如果没有新的信号递达,此次返回用户态将会恢复main函数的上下文,并继续执行。
    在这里插入图片描述

2. sigaction() 函数

sigaction()函数是一个用于设置信号处理函数的系统调用。它允许用户程序指定对特定信号的处理方式,包括捕捉信号、忽略信号或使用默认处理方式。
在这里插入图片描述

(1)函数原型

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);

(2)参数说明

  • signum:指定要设置处理方式的信号编号。
  • act指向一个struct sigaction结构体,用于设置新的信号处理方式
  • oldact可选参数,指向一个struct sigaction结构体,用于保存之前的信号处理方式。

struct sigaction结构体定义如下:

struct sigaction {
    void (*sa_handler)(int);
    void (*sa_sigaction)(int, siginfo_t *, void *);
    sigset_t sa_mask;
    int sa_flags;
    void (*sa_restorer)(void);
};

该结构体的主要成员包括

  • sa_handler:指定信号处理函数的地址,可以是一个函数指针,或者是SIG_IGN(表示忽略信号)或SIG_DFL(表示使用默认处理方式)。
  • sa_sigaction:用于指定信号处理函数的扩展形式,可以获取更多关于信号的信息,如发送信号的进程ID等。
  • sa_mask:指定一个信号屏蔽集,当进入信号处理函数时,会将这个屏蔽集与当前进程的信号屏蔽字进行按位或操作,从而阻塞其他指定的信号。
  • sa_flags:用于设置一些标志位,如SA_RESTART表示在信号处理函数返回后自动重启被中断的系统调用。
  • sa_restorer:已废弃的字段,现在不再使用。

(3)返回值

sigaction()函数返回值为0表示操作成功,-1表示出现了错误。如果发生错误,可以通过errno变量获取错误码。常见的错误码包括:

  • EINVAL:指定的信号编号无效或者提供的struct sigaction结构体无效。
  • ENOENT:指定的信号编号不存在。

(4)函数使用

使用sigaction()函数进行信号处理的一般步骤如下:

  1. 创建一个struct sigaction结构体对象,并根据需要设置其中的成员,特别是sa_handlersa_sigaction成员来指定信号处理函数。
  2. 调用sigaction()函数,传入要设置处理方式的信号编号、指向上述结构体对象的指针以及可选的保存之前处理方式的结构体指针。
  3. 根据sigaction()函数的返回值判断操作是否成功。

下面是一个简单的C语言示例,演示如何使用sigaction()函数来捕获和处理SIGINT信号(即Ctrl + C):

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

void sigint_handler(int signo) {
    printf("Caught SIGINT, exiting...\n");
    exit(1);
}

int main() {
    struct sigaction sa;

    // 设置信号处理函数为sigint_handler
    sa.sa_handler = sigint_handler;
    // 清空sa_mask,即不阻塞任何其他信号
    sigemptyset(&sa.sa_mask);
    // 设置一些标志位,这里使用默认值0
    sa.sa_flags = 0;

    // 注册对SIGINT信号的处理方式
    if (sigaction(SIGINT, &sa, NULL) == -1) {
        perror("sigaction");
        return 1;
    }

    printf("Press Ctrl+C to send a SIGINT...\n");

    // 进入一个无限循环,等待信号
    while (1) {
        sleep(1);
    }

    return 0;
}

在这个示例中,首先定义了一个名为sigint_handler的函数,用于处理SIGINT信号。然后在main函数中,创建了一个struct sigaction对象sa,并设置了其中的成员,包括sa_handler指向sigint_handler函数地址,sa_mask为空,sa_flags为0。接着调用sigaction()函数注册对SIGINT信号的处理方式。最后进入一个无限循环,等待信号的到来。

当用户按下Ctrl+C时,会发送SIGINT信号,程序会捕获该信号并调用sigint_handler函数进行处理,打印一条消息并退出程序。这样就实现了对SIGINT信号的自定义处理。

二、可重入函数与不可重入函数

在这里插入图片描述
main函数调用insert函数向一个链表head中插入节点node1,插入操作分为两步,刚做完第一步的时候因为硬件中断使进程切换到内核,再次回用户态之前检查到有信号待处理,于是切换到sighandler函数。sighandler也调用insert函数向同一个链表head中插入节点node2,插入操作的两步都做完之后从sighandler返回内核态,再次回到用户态就从main函数调用的insert函数中继续 往下执行,先前做第一步之后被打断,现在继续做完第二步。结果是 main函数和sighandler先后向链表中插入两个节点,而最后只有一个节点真正插入链表中了

像上例这样,insert函数被不同的控制流程调用,有可能在第一次调用还没返回时就再次进入该函数,这称为重入insert函数访问一个全局链表有可能因为重入而造成错乱。像这样的函数称为不可重入函数,反之如果一个函数只访问自己的局部变量或参数,则称为可重入(Reentrant) 函数。想一下,为什么两个不同的控制流程调用同一个函数,访问它的同一个局部变量或参数就不会造成错乱?

1. 可重入函数条件

可重入函数必须满足以下条件

  1. 不使用全局变量或静态变量,或者只读取这些变量的值。

  2. 不修改非本地的内存区域,或者仅修改线程本地的内存区域。

  3. 不调用可能导致线程挂起或阻塞的函数,如sleep()wait()等。

一些示例可重入函数包括:memcpy()strlen()sprintf()strtok_r()等。

🚨注意为了确保函数的可重入性,可以使用线程安全的函数或使用锁或其他同步机制来保护共享资源。同时,应该避免在函数中使用全局变量和静态变量,并尽可能将数据和状态存储在本地变量中

2. 不可重入函数特征

不可重入函数通常具有以下特征

  1. 使用全局变量或静态变量,或者修改非本地的内存区域。

  2. 调用可能导致线程挂起或阻塞的函数。

  3. 依赖于某些外部状态或资源。

一些示例不可重入函数包括:printf()scanf()malloc()signal()等。

🚨注意在信号处理程序中只能使用可重入函数。由于信号处理程序执行时可能会中断主程序的正常执行流程,因此不能使用不可重入函数,否则可能会导致意外行为或安全问题

三、volatile关键字

在C和C++中,volatile用于告诉编译器不要对该变量进行优化,以确保每次访问该变量都从内存中读取或写入。

volatile关键字通常用于以下两种情况:

  1. 并发访问:当多个线程或多个任务并发地访问同一个变量时,为了避免出现数据竞争和意外的优化行为,可以使用volatile关键字修饰变量。这样可以确保每次访问都从内存中读取或写入,而不是依赖于编译器的优化策略。

  2. 中断处理:在嵌入式系统或操作系统开发中,中断处理程序通常需要访问硬件寄存器或共享变量。由于中断可能在任何时间发生,编译器可能会对变量进行优化,导致不正确的结果。通过使用volatile关键字修饰这些变量,可以确保每次访问都是实时的,不受编译器的优化干扰。

  3. 在信号处理程序中,volatile关键字可以用于告诉编译器不要对某些变量进行优化。由于信号处理程序执行时可能会中断主程序的正常执行流程,因此编译器可能会错误地优化某些变量或表达式,导致程序行为异常。

正如下面这个示例

#include <stdio.h>
#include <signal.h>

sig_atomic_t flag = 0;

void handle_signal(int signum) {
    flag = 1;
}

int main() {
    signal(SIGINT, handle_signal);

    while (1) {
        if (flag) {
            printf("Received SIGINT signal, exiting...\n");
            break;
        }
    }

    return 0;
}

优化情况下,键入 CTRL + C ,2号信号被捕捉,执行自定义动作,修改 flag=1 ,但是 while 条件依旧满足,进程继续运行!但是很明显flag肯定已经被修改了,但是为何循环依旧执行?很明显, while 循环检查的flag,并不是内存中最新的flag,这就存在了数据二异性的问题while 检测的flag其实已经因为优化,被放在了CPU寄存器当中。如何解决呢?很明显需要 volatile!!

#include <stdio.h>
#include <signal.h>

volatile sig_atomic_t flag = 0; //使用了volatile关键字,编译器不会对它进行优化

void handle_signal(int signum) {
    flag = 1;
}

int main() {
    signal(SIGINT, handle_signal);

    while (1) {
        if (flag) {
            printf("Received SIGINT signal, exiting...\n");
            break;
        }
    }

    return 0;
}

在上面的示例中,定义了一个名为flagvolatile sig_atomic_t类型变量,用于表示是否收到了SIGINT信号。在主程序中,进入一个无限循环,检查flag变量是否被设置为1。如果收到SIGINT信号,信号处理程序会将flag变量设置为1,从而跳出循环并退出程序。由于flag变量被声明为volatile关键字,编译器不会对它进行优化,确保每次访问都从内存中读取或写入。这样可以避免由于编译器优化导致的意外行为。

🚨注意:在信号处理程序中,只有少量的函数和表达式可以安全地使用。具体来说,只有那些不分配内存或锁定全局资源的函数和表达式才能被安全地使用。为了确保信号处理程序的可重入性和线程安全性,应该尽可能避免在信号处理程序中使用非安全函数和表达式。

温馨提示

感谢您对博主文章的关注与支持!如果您喜欢这篇文章,可以点赞、评论和分享给您的同学,这将对我提供巨大的鼓励和支持。另外,我计划在未来的更新中持续探讨与本文相关的内容。我会为您带来更多关于Linux以及C++编程技术问题的深入解析、应用案例和趣味玩法等。如果感兴趣的话可以关注博主的更新,不要错过任何精彩内容!

再次感谢您的支持和关注。我们期待与您建立更紧密的互动,共同探索Linux、C++、算法和编程的奥秘。祝您生活愉快,排便顺畅!
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/202503.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MQTT发布_订阅架构(Pub_Sub)

MQTT发布/订阅架构&#xff08;Pub/Sub&#xff09; 本文中&#xff0c;将深入研究Pub/Sub架构&#xff0c;在软件架构中一个消息模式&#xff0c;它支持不同组件或系统之间以解耦的方式进行通信。 在前一片文章[MQTT简介]http://t.csdnimg.cn/6lNeZ中&#xff0c;对MQTT有一个…

Gitee-PicGo-Typora

Gitee-PicGo-Typora 问题引出 问题1&#xff1a;根据相关法律法规和政策&#xff0c;您的部分文件因存在敏感信息而无法显示 就在昨晚&#xff0c; 我在记笔记的时候&#xff0c;发现之前配置的七牛云图床出了问题&#xff1a; 1、根据相关法律法规和政策&#xff0c;您的部…

RabbitMQ消息模型之Routing-Topic

Routing Topic Topic类型的Exchange与Direct相比&#xff0c;都是可以根据RoutingKey把消息路由到不同的队列。只不过Topic类型Exchange可以让队列在绑定Routing key的时候使用通配符&#xff01;这种模型Routingkey一般都是由一个或多个单词组成&#xff0c;多个单词之间以”…

Mysql安全之基础合规

一、背景 某次某平台进行安全性符合型评估时&#xff0c;列出了数据库相关安全选项&#xff0c;本文特对此记录&#xff0c;以供备忘参考。 二、安全配置 2.1、数据库系统登录时的用户进行身份标识和鉴别&#xff1b; 1&#xff09;对登录Mysql系统用户的密码复杂度是否有要…

Stream API练习题

作者简介&#xff1a;大家好&#xff0c;我是smart哥&#xff0c;前中兴通讯、美团架构师&#xff0c;现某互联网公司CTO 联系qq&#xff1a;184480602&#xff0c;加我进群&#xff0c;大家一起学习&#xff0c;一起进步&#xff0c;一起对抗互联网寒冬 考虑到Stream API在实际…

2023-11-30 事业-代号s-资质-香港公司-带注册服务商-盛森国际-分析

摘要: 基于合法避税及其他因素&#xff0c;考虑在香港注册公司. 选择的服务商为盛森国际&#xff0c;对该公司做彻底的背调和服务分析, 以规避潜在的风险. 并分析该公司在香港代注册的服务商中的行业竞争力, 以保证其服务的质量及成本的控制. 盛森国际官方资料: 官网: 注册香港…

Nuxt.js:下一代Web开发框架的革命性力量

文章目录 一、Nuxt.js简介二、Nuxt.js的特点1. 集成Vue.js和Node.js2. 自动代码分割和优化3. 服务端渲染&#xff08;SSR&#xff09;4. 强大的路由管理5. 丰富的插件系统 三、Nuxt.js的优势1. 提高开发效率2. 降低维护成本3. 提高用户体验 四、Nuxt.js在实际应用中的案例1. 电…

YOLOv5独家原创改进:自研独家创新FT_Conv,卷积高效结合傅里叶分数阶变换

💡💡💡本文自研创新改进:卷积如何有效地和频域结合,引入分数阶傅里叶变换(FrFT)和分数阶Gabor变换(FrGT),最终创新到YOLOv5。 使用方法:1)直接替换原来的C2f;2)放在backbone SPPF后使用;等 推荐指数:五星 在道路缺陷检测任务中,原始map为0.8,FT_Conv为0.82 …

linux用户组_创建_删除_修改

2.2.2 用户组 每个用户都有一个用户组&#xff0c;系统可以对一个用户组中的所有用户进行集中管理。不同Linux系统对用户组的规定有所不同&#xff0c;如Linux下的用户属于与它同名的用户组&#xff0c;这个用户组在创建用户时同时创建。 组的类型&#xff1a; 基本组&#x…

基于STM32+定时器中断和定时器外部时钟(标准库函数讲解)

前言 本篇博客主要学习了解定时器的标准库函数&#xff0c;以及定时器中断进行LED灯的反转&#xff0c;还有定时器外部时钟获取脉冲计数功能。本篇博客大部分是自己收集和整理&#xff0c;如有侵权请联系我删除。 本篇博客主要是对通用定时器来讲解&#xff0c;功能适中比较常…

判断数组中每个元素是否为负数 numpy.signbit()

【小白从小学Python、C、Java】 【计算机等级考试500强双证书】 【Python-数据分析】 判断数组中每个元素是否为负数 numpy.signbit() [太阳]选择题 请问以下代码中最后输出结果是&#xff1f; import numpy as np a np.array([-1, 0, 1]) print("【显示】a ",a) pr…

智能优化算法应用:基于帝国主义竞争算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于帝国主义竞争算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于帝国主义竞争算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.帝国主义竞争算法4.实验参数设定5.算…

运维知识点-PostgreSql

PostgreSql 下载安装地址安装组件数据目录设置superuser密码 端口安装语言安装完成&#xff0c;是否安装Stack Builder 下载 https://www.postgresql.org/download/windows/ https://get.enterprisedb.com/postgresql/postgresql-13.7-1-windows-x64.exe 我下载的 13.7 安装…

【MySQL数据库】SQL查询语句总结

目录 一、查询数据 1.1 基本查询语句 1.2 表单查询 1.3 WHERE子句 1.3.1 IN关键字查询 1.3.2 Between查询范围 1.3.3 Like匹配查询 1.3.4 AND多条件查询&#xff08;等同于&&&#xff09; 1.3.5 OR多条件查询&#xff08;等同于||&#xff09; 1.3.6 LIMIT子句 1.3.7 对…

基于Java SSM框架实现母婴儿用品网站系统项目【项目源码+论文说明】

基于java的SSM框架实现母婴儿用品网站系统演示 摘要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 母婴用品网站&#xff0c;主要的模块包括管理员&#xff1b;主页、个人中心、用户管理、商品分…

架构图是什么,该怎么制作?

架构图是指可视化展示软件、系统、应用程序、网络等各种体系结构的一类图表或图形&#xff0c;它能够形象地展示体系结构中各个组成部分和它们之间的关系。 架构图的类型 架构图的种类比较多&#xff0c;逐一列举不太合适&#xff0c;这里只列举一些常见的架构图类型&#…

Oracle E-Business Suite软件 任意文件上传漏洞(CVE-2022-21587)

0x01 产品简介 Oracle E-Business Suite&#xff08;电子商务套件&#xff09;是美国甲骨文&#xff08;Oracle&#xff09;公司的一套全面集成式的全球业务管理软件。该软件提供了客户关系管理、服务管理、财务管理等功能。 0x02 漏洞概述 Oracle E-Business Suite 的 Oracle…

LeetCode刷题---斐波那契数列模型

顾得泉&#xff1a;个人主页 个人专栏&#xff1a;《Linux操作系统》 《C/C》 《LeedCode刷题》 键盘敲烂&#xff0c;年薪百万&#xff01; 一、第N个泰波那契数 题目链接&#xff1a;1137. 第 N 个泰波那契数 题目描述 泰波那契序列Tn定义如下: T00,T11,T2 1,且在n&g…

2023.11.30 homework

兴趣最重要了&#xff0c;没兴趣不喜欢勉强带来的苦楚&#xff0c;并不能促使变好变优秀。 虽然我们的社会环境依旧很残酷&#xff0c;各种各样的硬性要求。

Docker + Jenkins + Nginx实现前端自动化部署

目录 前言一、前期准备工作1、示例环境2、安装docker3、安装Docker Compose4、安装Git5、安装Nginx和Jenkinsnginx.confdocker-compose.yml 6、启动环境7、验证Nginx8、验证Jenkins 二、Jenkins 自动化部署配置1、设置中文2、安装Publish Over SSH、NodeJS&#xff08;1&#x…