YOLOv8改进 | 2023 | DWRSeg扩张式残差助力小目标检测 (附修改后的C2f+Bottleneck)

论文地址:官方论文地址

代码地址:该代码目前还未开源,我根据论文内容进行了复现内容在文章末尾。


一、本文介绍

本文内容给大家带来的DWRSeg中的DWR模块来改进YOLOv8中的C2f和Bottleneck模块,主要针对的是小目标检测,主要创新点可以总结如下:多尺度特征提取机制的深入研究和创新的DWR模块和SIR模块的提出这种方法使得网络能够更灵活地适应不同尺度的特征,从而更准确地识别和分割图像中的物体。 通过本文你能够了解到DWRSeg的基本原理和框架,并且能够在你自己的网络结构中进行添加(DWRSeg需要增加一定的计算量一个DWR模块大概增加0.4GFLOPs)

  专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

实验效果对比->

因为资源有限我发的文章都要做对比实验所以本次实验我只用了一百张图片检测的是火灾训练了一百个epoch,该结果只能展示出该机制有效,但是并不能产生决定性结果,因为具体的效果还要看你的数据集和实验环境所影响(这次找的数据集质量好像不太好效果波动很大)。 

 

目录

一、本文介绍

二、DWRSeg的原理介绍

2.1 DWRSeg的主要思想 

2.2 多尺度特征提取机制的深入研究

2.3 创新的DWR模块和SIR模块的提出

三、DWR模块代码

3.1 DWR模块复现代码

3.2 修改了DWR模块的C2f和Bottleneck模块 

四、手把手教你添加DWR和C2f_DWR模块

4.1 DWR的添加教程

4.2 DWR的yaml文件和训练截图

4.2.1 DWR的yaml文件

4.2.2 DWR的训练过程截图 

五、DWR可添加的位置

5.1 推荐DWR可添加的位置 

5.2图示DWR可添加的位置 

六、本文总结


 

二、DWRSeg的原理介绍

2.1 DWRSeg的主要思想 

DWRSeg的主要创新点可以总结如下:

  1. 多尺度特征提取机制的深入研究:利用深度分离扩张卷积进行多尺度特征提取,并设计了一种高效的两步残差特征提取方法(区域残差化 – 语义残差化)。这种方法显著提高了实时语义分割中捕获多尺度信息的效率。

  2. 创新的DWR模块和SIR模块的提出:提出了一个新颖的DWR(扩张残差)模块和SIR(简单反向残差)模块。这些模块具有精心设计的接收场大小,分别用于网络的上层和下层。

DWRSeg网络在实时语义分割领域取得了一定的效果(从论文的结果来看下图),特别是在提高处理速度和减轻模型负担的方面。


2.2 多尺度特征提取机制的深入研究

利用深度分离扩张卷积进行多尺度特征提取。主要内容可以总结如下:

  1. 两步残差特征提取方法:该方法包括区域残差化(Region Residualization)和语义残差化(Semantic Residualization),旨在提高实时语义分割中多尺度信息捕获的效率​​。

  2. 区域残差化:这一步骤中,首先将区域特征图分成几组,然后对这些组进行不同速率的深度分离扩张卷积。这样做可以智慧地根据第二步中的接收场大小来学习特征图,以反向匹配接收场​​。

  3. 语义残差化:在这一步中,仅使用一个具有期望接收场的深度分离扩张卷积对每个简洁的区域形式特征图进行基于语义的形态学过滤。这改变了多速率深度分离扩张卷积在特征提取中的角色,从尝试获取尽可能多的复杂语义信息转变为对每个简洁表达的特征图进行简单的形态学过滤​​。

  4. 精细化的扩张率和容量设计:为了充分利用每个网络阶段可以实现的不同区域大小的特征图,需要精心设计扩张率和深度分离卷积的容量,以匹配每个网络阶段的不同接收场要求​​。

通过这种多尺度特征提取机制的深入研究和创新设计,论文提高了实时语义分割任务中多尺度信息捕获的效率(第一小节的图片)


2.3 创新的DWR模块和SIR模块的提出

提出的DWR模块和SIR模块的创新点如下:

DWR(Dilation-wise Residual)模块(本文复现的就是这个DWR模块)

  • 应用场景:DWR模块主要应用于网络的高阶段,采用设计的两步特征提取方法​​。
  • 特征提取:该模块利用两步残差特征提取方法(区域残差化 – 语义残差化),有效提高实时语义分割中多尺度信息捕获的效率。
  • 接收场大小设计:DWR模块针对网络的上层设计了精细化的接收场大小。

SIR(Simple Inverted Residual)模块

  • 应用场景:SIR模块专门为网络的低阶段设计,以满足小接收场的需求,保持高效的特征提取效率​​。
  • 结构调整
  1. 移除了多分支扩张卷积结构,仅保留第一分支,以压缩接收场。
  2. 移除了对提取效果贡献较小的3x3深度分离卷积(语义残差化),因为输入特征图的大尺寸和弱语义使得单通道卷积收集的信息太少。因此,在低阶段,单步特征提取比两步特征提取更高效。

总结:这两个模块的设计改进对于提高实时语义分割网络的性能至关重要,高效处理多尺度上下文信息的能力方面。


三、DWR模块代码

3.1 DWR模块复现代码

使用方法请看章节四

import torch
import torch.nn as nn

class Conv(nn.Module):
    # 包含BN和ReLU
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):
        super(Conv, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias)
        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x


class DWR(nn.Module):
    def __init__(self, c) -> None:
        super().__init__()

        self.conv_3x3 = Conv(c, c, 3, padding=1)

        self.conv_3x3_d1 = Conv(c, c, 3, padding=1, dilation=1)
        self.conv_3x3_d3 = Conv(c, c, 3, padding=3, dilation=3)
        self.conv_3x3_d5 = Conv(c, c, 3, padding=5, dilation=5)

        self.conv_1x1 = Conv(c * 3, c, 1)

    def forward(self, x):
        x_ = self.conv_3x3(x)
        x1 = self.conv_3x3_d1(x_)
        x2 = self.conv_3x3_d3(x_)
        x3 = self.conv_3x3_d5(x_)

        x_out = torch.cat([x1, x2, x3], dim=1)
        x_out = self.conv_1x1(x_out) + x
        return x_out


3.2 修改了DWR模块的C2f和Bottleneck模块 

使用方法请看章节四


class Bottleneck_DWRSeg(nn.Module):
    """Standard bottleneck."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
        expansion.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = DWRSeg_Conv(c_, c2, k[1], 1, groups=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """'forward()' applies the YOLO FPN to input data."""
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class C2f_DWRSeg(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck_DWRSeg(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

    def forward(self, x):
        """Forward pass through C2f layer."""
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))


四、手把手教你添加DWR和C2f_DWR模块

4.1 DWR的添加教程

添加教程这里不再重复介绍、因为专栏内容有许多,添加过程又需要截特别图片会导致文章大家读者也不通顺如果你已经会添加注意力机制了,可以跳过本章节,如果你还不会,大家可以看我下面的文章,里面详细的介绍了拿到一个任意机制(C2f、Conv、Bottleneck、Loss、DetectHead)如何添加到你的网络结构中去。

这个卷积也可以放在C2f和Bottleneck中进行使用可以即插即用,个人觉得放在Bottleneck中效果比较好。

添加教程->YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头

 


4.2 DWR的yaml文件和训练截图

4.2.1 DWR的yaml文件

下面的配置文件我修改的地址。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9


# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f_DWRSeg, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f_DWRSeg, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f_DWRSeg, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

 


4.2.2 DWR的训练过程截图 

下面是添加了DWR的训练截图。

下面的是将DWR机制添加到了C2f和Bottleneck。


五、DWR可添加的位置

5.1 推荐DWR可添加的位置 

DWR是一种即插即用的模块其可以添加的位置有很多,添加的位置不同效果也不同,所以我下面推荐几个添加的位,置大家可以进行参考,当然不一定要按照我推荐的地方添加。

  1. 残差连接中:在残差网络的残差连接中加入DWR

  2. Neck部分:YOLOv8的Neck部分负责特征融合,这里添加修改后的C2f_DWR可以帮助模型更有效地融合不同层次的特征。

  3. 检测头中的卷积:在最终的输出层前加入DWR可以使模型在做出最终预测之前,更加集中注意力于最关键的特征。

文字大家可能看我描述不太懂,大家可以看下面的网络结构图中我进行了标注。

5.2图示DWR可添加的位置 

六、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/201454.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Vite 了解

1、vite 与 create-vite 的区别 2、vite 解决的部分问题 3、vite配置文件的细节 3.1、vite语法提示配置 3.2、环境的处理 3.3、环境变量 上图补充 使用 3.4、vite 识别,vue文件的原理 简单概括就是,我们在运行 npm润dev 的时候,vite 会搭起…

fastReID论文总结

fastReID论文总结 fastReIDReID所面临的挑战提出的背景概念:所谓ReID就是从视频中找出感兴趣的物体(人脸、人体、车辆等)应用场景:存在的问题:当前的很多ReID任务可复用性差,无法快速落地使用解决方式&…

EMA训练微调

就是取前几个epoch的weight的平均值,可以缓解微调时的灾难性遗忘(因为新数据引导,模型权重逐渐,偏离训练时学到的数据分布,忘记之前学好的先验知识) class EMA():def __init__(self, model, decay):self.…

RabbitMQ消息模型之Sample

Hello World Hello World是官网给出的第一个模型,使用的交换机类型是直连direct,也是默认的交换机类型。 在上图的模型中,有以下概念: P:生产者,也就是要发送消息的程序C:消费者:消…

机器学习:领域自适应学习

训练一个分类器是小问题 上难度 训练数据和测试数据不一致,比如训练数据是黑白的,测试时彩色的,结果准确率非常低。 训练数据和测试数据有点差距的时候,能不能效果也能好呢?这就用到了领域自使用domain adptation 用一…

Windows 11的新功能不适用于所有人,但对将要使用的人来说非常酷

正如一个新的预览版本所示,Windows 11即将为那些使用手写笔的人添加一些智能功能,以及其他改进。 这是预览版22635.2776(也称为KB5032292),已推出Beta频道,这是发布预览版之前的最后一个测试方法&#xff…

速速报名!请查收 2023 龙蜥操作系统大会超全指南

亲爱的小伙伴们,大家好!我是大家的老朋友小龙!自 2023 龙蜥操作系统大会宣布启动以来,小龙收到了来自四面八方的诸多期待和小心心。首届龙蜥大会正如火如荼地进行中,为表示对关注社区的每一位小伙伴由衷的感谢&#xf…

Ubuntu安装ssh

Ubuntu安装ssh服务器 一、ssh ssh:安全外壳协议(secure shell)的缩写,安全外壳协议(安全的shell),是一个计算机网络协议(默认端口号为22)。通过ssh协议可以在客户端安全(提供身份认…

k8s中Pod控制器简介,ReplicaSet、Deployment、HPA三种处理无状态pod应用的控制器介绍

目录 一.Pod控制器简介 二.ReplicaSet(简写rs) 1.简介 (1)主要功能 (2)rs较完整参数解释 2.创建和删除 (1)创建 (2)删除 3.扩容和缩容 &#xff08…

【Java SE】带你在String类世界中遨游!!!

🌹🌹🌹我的主页🌹🌹🌹 🌹🌹🌹【Java SE 专栏】🌹🌹🌹 🌹🌹🌹上一篇文章:带你走近Java的…

【C 语言经典100例】C 练习实例9

题目&#xff1a;要求输出国际象棋棋盘。 程序分析&#xff1a;国际象棋棋盘由64个黑白相间的格子组成&#xff0c;分为8行*8列。用i控制行&#xff0c;j来控制列&#xff0c;根据ij的和的变化来控制输出黑方格&#xff0c;还是白方格。 #include<stdio.h>int main() {…

从 Elasticsearch 到 SelectDB,观测云实现日志存储与分析的 10 倍性价比提升

作者&#xff1a;观测云 CEO 蒋烁淼 & 飞轮科技技术团队 在云计算逐渐成熟的当下&#xff0c;越来越多的企业开始将业务迁移到云端&#xff0c;传统的监控和故障排查方法已经无法满足企业的需求。在可观测理念逐渐深入人心的当下&#xff0c;人们越来越意识到通过多层次、…

YOLOv5小目标检测层

目录 一、原理 二、yaml配置文件 一、原理 小目标检测层,就是增加一个检测头,增加一层锚框,用来检测输入图像中像素较小的目标 二、yaml配置文件 # YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters nc: 3 # number of classes depth_multiple: 0.33 # model…

案例,linux环境下OpenCV+Java,实现证件照在线更换背景色

先看效果&#xff08;图片来自网络&#xff0c;如有侵权&#xff0c;请联系作者删除&#xff09; 主要是通过java实现的&#xff0c;linux环境编译安装opencv及证件照背景色更换的核心算法在前面一篇文章中有写到。 目前算法还有瞎呲&#xff0c;当照片光线不均的时候会出现误…

低调使用。推荐一个 GPT4 Turbo、Vision、GPTs、DELL·E3 等所有最新功能同步可用国内网站

在 11 月 6 日&#xff0c;万众期待的 OpenAI DevDay&#xff0c;ChatGPT 发布了一系列新的产品&#xff0c;其中推出了 GPT4 Turbo&#xff0c;并且将GPT4 Vision&#xff0c;DELLE3 等等能力全部集合到一起&#xff0c;不需要再分开使用&#xff0c;原来的局限的文本聊天也进…

创业公司or大厂怎么选?不是凡尔赛,一个技巧让你涨薪10W!

最近总有一些特别“凡尔赛”的发几个 offer 问我选择哪个&#xff1f;其中比较典型的一个问题就是&#xff1a; “一个是处于上升期的创业型公司 &#xff0c;一个行业大厂&#xff0c;薪资待遇差不多&#xff0c;到底该如何进行选择和取舍呢&#xff1f;“ 这个问题不是个别…

Spring---对象的存储和读取

文章目录 Spring对象的存储创建Bean对象将Bean对象存储到spring中添加配置文件存储Bean对象 Spring对象的读取得到Spring上下文对象从Spring中取出Bean对象使用Bean对象 Spring对象的存储 创建Bean对象 Bean对象其实就是一个普通的Java对象。我们按照创建Java对象的方式来创建…

48个代码大模型汇总,涵盖原始、改进、专用、微调4大类

代码大模型具有强大的表达能力和复杂性&#xff0c;可以处理各种自然语言任务&#xff0c;包括文本分类、问答、对话等。这些模型通常基于深度学习架构&#xff0c;如Transformer&#xff0c;并使用预训练目标&#xff08;如语言建模&#xff09;进行训练。 在对大量代码数据的…

配电网重构单时段+多时段(附带matlab代码)

配电网重构单时段多时段 对于《主动配电网最优潮流研究及其应用实例》的基本复现 简介&#xff1a;最优潮流研究在配电网规划运行中不可或缺&#xff0c;且在大量分布式能源接入的主动配电网环境下尤为重要。传统的启发式算法在全局最优解和求解速度上均无法满足主动配电网运行…

什么是计算机病毒?

计算机病毒 1. 定义2. 计算机病毒的特点3. 计算机病毒的常见类型和攻击方式4. 如何防御计算机病毒 1. 定义 计算机病毒是计算机程序编制者在计算机程序中插入的破坏计算机功能或者破坏数据&#xff0c;影响计算机使用并且能够自我复制的一组计算机指令或程序代码。因其特点与生…