数据结构-二叉树(2)

3.4堆的应用

3.4.1 堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

1. 建堆

   1.升序:建大堆;

   2.降序:建小堆。

2. 利用堆删除思想来进行排序

这种写法有两个缺点:

 1、先有一个堆的数据结构
 2、空间复杂度复杂度的消耗

void HeapSort(int* a, int n)
{
	HP hp;
	HeapInit(&hp);
	for (int i = 0; i < n; i++)
	{
		HeapPush(&hp, a[i]);
	}
	
	int i = 0;
	while (!HeapEmpty(&hp))
	{
		//printf("%d ", HeapTop(&hp));
		a[i++] = HeapTop(&hp);
		HeapPop(&hp);
	}

	HeapDestroy(&hp);
}

所以我们可以稍微改进一下,使得只要有一个数组就可以进行堆排序:

假设要排一个升序:

先使用向下调整的方式建一个大堆,然后再写一个循环,当end=0时结束循环,每次进入循环先交换首尾数据,然后从头开始进行向下调整,每次end--。

void AdjustDown(int* a,int n, int parent)
{
	int child = parent * 2 + 1;
	while(child < n)
	{
		if (a[child] < a[child + 1] && child + 1 < n)
		{
			child += 1;
		}
		if (a[child] > a[parent])
		{
			Swap(&a[parent], &a[child]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}
void HeapSort(int* a, int n)
{
	//向下调整建堆
	for (int i = (n-1-1)/2; i >= n; i--)
	{
		AdjustDown(a,n,i);
	}
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}
}

3.4.2 TOP-K问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

1. 用数据集合中前K个元素来建堆
前k个最大的元素,则建小堆
前k个最小的元素,则建大堆

2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

 void PrintTopK(const char* filename, int k)
 {
	 // 1. 建堆--用a中前k个元素建堆
	 FILE* fout = fopen(filename, "r");
	 if (fout == NULL)
	 {
		 perror("fopen fail");
		 return;
	 }

	 int* minheap = (int*)malloc(sizeof(int) * k);
	 if (minheap == NULL)
	 {
		 perror("malloc fail");
		 return;
	 }

	 for (int i = 0; i < k; i++)
	 {
		 fscanf(fout, "%d", &minheap[i]);
	 }

	 // 前k个数建小堆
	 for (int i = (k - 2) / 2; i >= 0; --i)
	 {
		 AdjustDown(minheap, k, i);
	 }


	 // 2. 将剩余n-k个元素依次与堆顶元素交换,不满则则替换
	 int x = 0;
	 while (fscanf(fout, "%d", &x) != EOF)
	 {
		 if (x > minheap[0])
		 {
			 // 替换你进堆
			 minheap[0] = x;
			 AdjustDown(minheap, k, 0);
		 }
	 }


	 for (int i = 0; i < k; i++)
	 {
		 printf("%d ", minheap[i]);
	 }
	 printf("\n");

	 free(minheap);
	 fclose(fout);
 }

4.二叉树链式结构的实现

4.1 前置说明

在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。
首先我们手动创建一个链式二叉树,链接完后的二叉树大概是这个样子。

再看二叉树基本操作前,再回顾下二叉树的概念,二叉树是:
1. 空树
2. 非空:根节点,根节点的左子树、根节点的右子树组成的。

从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。
 

typedef struct BinaryTreeNode
{
	struct BinaryTreeNode* left;
	struct BinaryTreeNode* right;
	int val;
}BTNode;
int main()
{
	BTNode* node1 = BuyListNode(1);
	BTNode* node2 = BuyListNode(2);
	BTNode* node3 = BuyListNode(3);
	BTNode* node4 = BuyListNode(4);
	BTNode* node5 = BuyListNode(5);
	BTNode* node6 = BuyListNode(6);

	node1->left = node2;
	node1->right = node4;
	node2->left = node3;
	node4->left = node5;
	node4->right = node6;
}

4.2二叉树的遍历

4.2.1 前序、中序以及后序遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

 按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历

1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。
由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

下面主要分析前序递归遍历,中序与后序图解类似:

前序,中序,后序遍历代码:

//前序 根 左子树 右子树
void PrevOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
			return;
	}
	printf("%d ", root->val);
	PrevOrder(root->left);
	PrevOrder(root->right);
}

//中序 左子树 根 右子树
void InOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	InOrder(root->left);
	printf("%d ", root->val);
	InOrder(root->right);
}

//右序 左子树 右子树 根
void PostOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	PostOrder(root->left);
	PostOrder(root->right);
	printf("%d ", root->val);
}

前序遍历递归图解:

先访问根,在访问左子树,也就是先访问1,再访问1的左子树,1的左子树的根是2,所以再访问2,2的左子树还没有访问完,所以访问2的左子树的根3,再访问3的左子树NULL,到这里3的左子树访问完毕,开始访问3的右子树NULL,到这里3的右子树也访问完毕,开始访问2的右子树NULL......以此类推

 前序遍历递归展开图:

 

 中序和后序都是一样的过程,总之就是要把对应的左子树/右子树遍历到NULL才返回上一层。

4.3二叉树节点个数

这里也要把问题转化为递归的子问题,使用一个三目操作符,差不多是一个后序遍历,如果当前节点为NULL则返回0,不是NULL则返回他的左子树和右子树的节点个数加1,也就是自己这个节点。比方说要求以下二叉树的节点个数,后序就是从3的左子树NULL开始,节点3的左右子树都为空,则节点3返回0+0+1=1,再求节点2,节点2的左子树返回了1,右子树返回0,所以节点2返回1+0+1=2,以此类推1的右子树返回的是3,所以1这个根节点的返回值是2+3+1=6.

//节点个数
int TreeSize(BTNode* root)
{
	//后序
	return root == NULL ? 0 : TreeSize(root->left) + TreeSize(root->right) + 1;
}

4.4二叉树叶子节点个数

叶子节点就是没有左右子树的节点,所以进入函数先判断当前节点是否为NULL,如果是则返回0,再判断是否为叶子节点,左子树和右子树都为NULL才是叶子节点,返回1。如果两个if都未进入,说明当前节点至少有一个子节点,再写一个递归往下找,返回左右子树的全部叶子节点。

int TreeLeafSize(BTNode* root)
{
	//当前节点为空
	if (root == NULL)
		return 0;
	//左右子树为空,自己就是叶子
	if (root->left == NULL && root->right == NULL)
		return 1;
	//往下找
	return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}

4.5二叉树第k层节点个数

要求第k层的节点个数,首先我们要知道一个思路,假设要求这个二叉树第3层的节点个数,那么第3层就相当于根节点1的第3层,根节点1的第三层又相当于2和4的第二层,2和4的第二层又相当于3,5,6的第一层,所以当k=1且不为空时,返回1即可。递归左右子树,每次k-1.

int TreeKLevel(BTNode* root, int k)
{
	assert(k > 0);
	if (root == NULL)
	{
		return 0;
	}
	//走到最后一层
	if (k == 1)
	{
		return 1;
	}
	//每次往下找一层
	return TreeKLevel(root->left, k - 1) + TreeKLevel(root->right, k - 1);
}

4.6二叉树查找值为x的节点

查找节点的话,首先判断当前节点是否满足val=x,如果满足直接返回当前节点,再判断是否为空,如果既不为空也不是要查找的节点则开始往左子树开始找,这个时候要创建一个变量tail来保存返回值,使用if判断返回值是什么情况,如果是空则开始往右子树找,如果不为空则说明找到了,直接返回tail。右子树也是一样的步骤,如果左右子树都没找到说明找不到了,返回NULL。

BTNode* TreeFind(BTNode* root,int x)
{
	if (root->val == x)
		return root;
	if (root == NULL)
		return NULL;
	BTNode* tail = NULL;
	tail = TreeFind(root->left,x);
	if (tail)
		return  tail;
	tail = TreeFind(root->right,x);
	if (tail)
		return tail;
	return NULL;
}

今天的分享到这里就结束啦!感谢大家的阅读!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/201242.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Bert-VITS2本地部署遇到的错误

关于Bert-VITS2本地部署遇到的错误 1、在下载python中相关依赖时报错 building ‘hdbscan._hdbscan_tree’ extension error: Microsoft Visual C 14.0 or greater is required. Get it with “Microsoft C Build Tools”: https://visualstudio.microsoft.com/visual-cpp-bu…

[密码学]DES

先声明两个基本概念 代换&#xff08;substitution&#xff09;,用别的元素代替当前元素。des的s-box遵循这一设计。 abc-->def 置换&#xff08;permutation&#xff09;&#xff0c;只改变元素的排列顺序。des的p-box遵循这一设计。 abc-->bac DES最核心的算法就是…

【人工智能Ⅰ】实验2:遗传算法

实验2 遗传算法实验 一、实验目的 熟悉和掌握遗传算法的原理、流程和编码策略&#xff0c;理解求解TSP问题的流程并测试主要参数对结果的影响&#xff0c;掌握遗传算法的基本实现方法。 二、实验原理 旅行商问题&#xff0c;即TSP问题&#xff08;Traveling Salesman Proble…

MySQL 中的锁(二)

8.4. 意向锁 但是在上面的例子这里头有两个问题&#xff1a; 如果我们想对大楼整体上 S 锁&#xff0c;首先需要确保大楼中的没有正在维修的楼层&#xff0c;如果有正在维修的楼层&#xff0c;需要等到维修结束才可以对大楼整体上 S 锁。 如果我们想对大楼整体上 X 锁&#xf…

【JUC】十六、LockSupport类实现线程等待与唤醒

文章目录 1、LockSupport2、wait和notify存在的问题3、await和signal存在的问题4、park和unpark方法5、LockSupport用法示例6、Permit不会累积7、面试 1、LockSupport 线程等待和唤醒的方式有&#xff1a; 使用Object的wait方法让对象上活动的线程等待&#xff0c;使用notify…

OpenCV | 图像梯度sobel算子、scharr算子、lapkacian算子

import cv2 #opencv读取的格式是BGR import numpy as np import matplotlib.pyplot as plt#Matplotlib是RGB %matplotlib inline 1、sobel算子 img cv2.imread(pie.png,cv2.IMREAD_GRAYSCALE) cv2.imshow(img,img) cv2.waitKey() cv2.destroyAllWindows() pie图片 dst cv2.S…

enote笔记法之附录2——5w1h2k关联词(ver0.22)

enote笔记法之附录2——5w1h2k关联词&#xff08;ver0.22&#xff09; 最上面的是截屏的完整版&#xff0c;分割线下面的是纯文字版本&#xff1a; 作者姓名&#xff08;本人的真实姓名&#xff09;&#xff1a;胡佳吉 居住地&#xff1a;上海 作者网名&#xff1a;EverSt…

将原生Spring项目中某些配置文件中的易变内容参数化

&#x1f609;&#x1f609; 学习交流群&#xff1a; ✅✅1&#xff1a;这是孙哥suns给大家的福利&#xff01; ✨✨2&#xff1a;我们免费分享Netty、Dubbo、k8s、Mybatis、Spring...应用和源码级别的视频资料 &#x1f96d;&#x1f96d;3&#xff1a;QQ群&#xff1a;583783…

Linux:windows 和 Linux 之间文本格式转换

背景 在 Windows 上编辑的文件&#xff0c;放到 Linux 平台&#xff0c;有时会出现奇怪的问题&#xff0c;其中有一个是 ^M 引起的&#xff0c;例如这种错误&#xff1a; /bin/bash^M: bad interpreter 这个问题相信大家也碰到过&#xff0c;原因是 Windows 和 Linux 关于换行的…

【计算机网络】虚拟路由冗余(VRRP)协议原理与配置

目录 1、VRRP虚拟路由器冗余协议 1.1、协议作用 1.2、名词解释 1.3、简介 1.4、工作原理 1.5、应用实例 2、 VRRP配置 2.1、配置命令 1、VRRP虚拟路由器冗余协议 1.1、协议作用 虚拟路由冗余协议(Virtual Router Redundancy Protocol&#xff0c;简称VRRP)是由IETF…

输入通道数 和 输出通道数 的理解

输入通道数&#xff08;in_channels&#xff09;输出通道数&#xff08;out_channels&#xff09; 在卷积神经网络中通常需要输入 in_channels 和 out_channels &#xff0c;即输入通道数和输出通道数&#xff0c;它们代表什么意思呢&#xff1f; 输入通道数&#xff08;in_c…

报错解决:You may need an additional loader to handle the result of these loaders.

报错信息如下 vue 项目 Module parse failed: Unexpected token (1:9) File was processed with these loaders:* ./node_modules/vue/cli-plugin-babel/node_modules/cache-loader/dist/cjs.js* ./node_modules/babel-loader/lib/index.js* ./node_modules/eslint-loader/in…

联想SR660 V2服务器使用默认用户登录BMC失败

新到了一台服务器&#xff0c;使用默认用户登录BMC失败 登录失败提示&#xff1a;账号或密码错误 解决方案&#xff1a; 1、重置BMC 2、新增用户 开机后在出现 ThinkServer 界面按 F1&#xff0c;进入 BIOS 界面 进入 System Settings-BMC Configuration 菜单相关&#xf…

实施工程师运维工程师面试题

Linux 1.请使用命令行拉取SFTP服务器/data/20221108/123.csv 文件&#xff0c;到本机一/data/20221108目录中。 使用命令行拉取SFTP服务器文件到本机指定目录&#xff0c;可以使用sftp命令。假设SFTP服务器的IP地址为192.168.1.100&#xff0c;用户名为username&#xff0c;密…

基于傅里叶变换的运动模糊图像恢复算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1、傅里叶变换与图像恢复 4.2、基于傅里叶变换的运动模糊图像恢复算法原理 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 %获取角度 img…

Linux常用命令----touch命令

文章目录 Linux操作系统中&#xff0c;touch 命令是一个常用且强大的工具&#xff0c;主要用于创建空文件或设置文件的时间戳。本文将详细介绍 touch 命令的各种参数及其用法&#xff0c;并通过实例演示来加深理解。 1. touch命令基础 touch 命令的基本语法格式为&#xff1a…

轻量封装WebGPU渲染系统示例<39>- emissive和arm纹理支持(源码)

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/rendering/src/voxgpu/sample/DynamicShaderBuilding2.ts 当前示例运行效果: 此示例基于此渲染系统实现&#xff0c;当前示例TypeScript源码如下&#xff1a; export class DynamicShaderBuildi…

分布式机器学习、联邦学习、多智能体的区别和联系——一文进行详细解释

1 分布式机器学习、联邦学习、多智能体介绍 最近这三个方面的论文都读过&#xff0c;这里写一篇博客归纳一下&#xff0c;以方便搞这几个领域的其他童鞋入门。我们先来介绍以下这三种机器学习范式的基本概念。 1.1 分布式机器学习介绍 分布式机器学习(distributed machine l…

数据结构 -- 图论之最小生成树

目录 1.最小生成树算法 1.Kruskal算法 2.Prim算法 1.最小生成树算法 定义:最小生成树算法:连通图有n个顶点组成,那么此时的图的每一个点都能相互连接并且边的个数为n-1条,那么此时该图就是最小生成树. 下面量算法有几个共同的特点: 1.只能使用图中权值最小的边来构造生成树 …

interface previously declared 的bug问题

其实就是重复定义了&#xff0c;只需要加如下的代码即可&#xff1a; 其中把APB的部分改成自己的接口名字就好了。