【linux】信号——信号产生

信号产生

  • 1.预备知识
  • 2.信号产生
    • 2.1通过键盘发送信号
    • 2.2系统调用接口向进程发送信号
    • 2.3硬件异常产生信号
    • 2.4软件条件
    • 2.5总结

自我名言只有努力,才能追逐梦想,只有努力,才不会欺骗自己。在这里插入图片描述
喜欢的点赞,收藏,关注一下把!在这里插入图片描述

首先说明一点信号不是信号量。不能把这两个东西放在一起。

那信号讲什么呢?
在这里插入图片描述

1.预备知识

那信号是怎么回事,这里只能这样说,信号是针对进行发送某种信号到来的一种机制,让信号能被进程处理。,让我们在后面的知识中,更能理解这句话的含义。

先见识见识信号。

在这里插入图片描述
前面数字是信号的编号,后面大写的是宏。
就比如杀死一个进程

kill -9  进程pid

这里可以使用编号,也可以使用SIGKILL

再可以数一数信号有多少个。
其实并没有64个,0,32,33信号是没有的。
【1,31】普通信号
【34,64】实时信号 (我们不学这个)

先说信号的概念帮我们简单了解一下信号,但再说信号一些概念之前,我们先从生活角度中的信号来帮我们理解。

生活中的信号:
1.红绿灯
2.闹钟
3.信息通知
4.劳资蜀道三
5.女朋友把你拉黑
6.烽火台狼烟
等等这些都是我们生活中的信号。

我们以红绿灯为例。人是能够识别红绿灯的。
这里识别有两层意思。
在这里插入图片描述

第一个问题可能会觉得很奇怪,你为什么能够识别红绿灯?

在这里插入图片描述

第二个问题,当信号来的时候,你不一定会立即处理这个信号

在这里插入图片描述

信号的产生是异步的。

举个栗子,你正在宿舍打着游戏,这时外卖小哥给你打电话让你下楼取餐,但是你忙着打着游戏并没有立刻下楼去取,而是让他把外卖放在楼下。当你打完游戏,记起还有外卖没拿,所以去楼下拿外卖。当然还有另一种情况,你打游戏上头了。然后忘记有外卖在楼下这回事。

在这里插入图片描述

当绿灯到达的时候,你有三种处理动作

在这里插入图片描述

如何把上面的这些概念迁移到进程中呢?

这里要有一个共识:信号是给进程发的

  1. 进程是如何识别信号的?(认识+动作)
    进程本身就是程序员编写的属性和逻辑的集合。所以这里先粗略的说是由程序员编码完成的。(后面学了信号更多知识就可以详细说明了)。

  2. 当进程收到信号的时候,进程可能正在执行更重要的代码,所以信号不一定会被立即处理

  3. 进程本身必须要有对于信号的保存能力

  4. 进程在处理信号的时候,一般有三种动作(默认,自定义,忽略)【信号被捕捉】

在我们现在还没有学过信号,上面1,2,4我们都不能具体解释,不过3我们可以根据以往学过的知识来分析分析。

如果一个信号是发给进程的,而进程要保存,那么应该保存在哪里?
task_struct(PCB)结构体中。

如何保存呢? 更准确来说如何保存是否收到了指定信号【1,31】。
是否是一种两态,我们是不是可以在task_struct结构体里,当然task_struct结构体中包含其他一大堆的属性,可以存在一个unsigned int signal32位比特位。

在这里插入图片描述
所以在进程中是不是只要存在对应的位图结构,然后当我们收到信号时,是不是只要将对应信号的位置由0->1,就代表我们已经完成了信号的发送,并且让进程暂时把这个信号保存起来了。

那如何理解信号的发送呢?
发送信号的本质:修改PCB的信号位图!
PCB是内核维护的数据结构对象----->PCB的管理者是OS,谁有权力修改PCB中的内容呢?------>OS!!

所以无论未来我们学习多少种发送信号的方式,本质都是通过OS向目标进程发送的信号!!
未来想让用户也能发送信号------->OS必须要提供发送信号,处理信号的相关系统调用!

我们使用kill命令,底层一定调用了对应的系统调用!

2.信号产生

2.1通过键盘发送信号

int main()
{
    int cnt=0;
    while(true)
    {
        printf("我是一个进程,我正在运行%d\n",cnt++);
        sleep(1);
    }
    return 0;
}

在这里插入图片描述
ctrl+c热键,终止前台进程。
本质ctrl+c是一个组合键---->OS识别---->OS将ctrl+c解释成为2号信号,2)SIGINT----->处理(三种动作)。但我们对2号信号没做任何改变,所以是默认处理。

man 7 signal //查看信号对应的手册

在这里插入图片描述

在这里插入图片描述
Action(行为):Term (Terminal终端)结束进程
Comment(解释):从键盘中断

所以2号信息的默认动作,结束进程。

接下来验证一下是不是发送了2号信号。

先介绍一个函数signal对指定的信号设置一个自定义动作。
在这里插入图片描述
signum:信号编号(捕捉那个信号)
handler:函数指针(捕捉这个信号后,你想怎么做,这是一个回调函数)

接下来验证

#include<iostream>
#include<unistd.h>
#include<cstdio>
#include<signal.h>

void handler(int signo)
{
    cout<<"捕捉到信号:"<<signo<<endl;
}

int main()
{
    signal(2,handler);
    int cnt=0;
    while(true)
    {
        printf("我是一个进程,我正在运行%d\n",cnt++);
        sleep(1);
    }
    return 0;
}

在这里插入图片描述
我不是对2号信号进行捕捉吗,并且代码还做了修改,为什么运行结果没什么变化。

注意,这里是signal函数的调用,并不是handler的调用,并且仅仅是设置了对信号的捕捉方法,并不代表方法被调用了。所以一般这个方法不会执行,除非收到对应的信号。

在这里插入图片描述

在这里插入图片描述
这两种方法都可以发送信号。然后signal函数对2号信息进行捕捉。

在这里插入图片描述

现在发2号信号,虽然能被捕捉,但是进程怎么退不出来了。
这是因为我们把2号信号默认动作,改成了自定义动作。
在这里插入图片描述
如果想退出怎么办?

kill -9 编号  //杀死进程

在这里插入图片描述
在这里插入图片描述
或者在自定义动作种加一个exit。

void handler(int signo)
{
    cout<<"进程捕捉到了一个信号,信号编号是:"<<signo<<endl;
    exit(0);
}

在这里插入图片描述

其实还有一个组合建ctrl+\,发送的是3号信号。也能终止进程。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这里留了一个问题,Core和Trem都是终止进程。为什么OS要设置两种不同的行为有什么用?

2.2系统调用接口向进程发送信号

在这里插入图片描述

kill可以给任意进程发送任意信号。

pid:目标进程pid
sig:发送几号信号
在这里插入图片描述
成功返回0,识别返回-1。
我们给进程发信号底层用的就是这个。

前面说过,信号是由OS向进程发送的。OS有这个能力,但不代表有权限使用这个能力。
信号的发送是由用户发起而OS执行的。

接下来我们写的代码想呈现这样的效果,一个进程正在运行,另一个进程在命令行给这个进程发送任意信号。

//mysignal.cc

#include<iostream>
#include<unistd.h>
#include<cstdio>
#include<signal.h>
#include<sys/types.h>
#include<string>

using namespace std;


void Usage(const string& proc)
{
    cout<<"\nUsage "<<proc<<" pid signo\n"<<endl;
}

// ./mysignal pid signo------>命令行参数
int main(int argc,char* argv[])
{
    if(argc != 3)
    {
        Usage(argv[0]);
        exit(1);
    }
    
    pid_t id=stoi(argv[1]);
    int signo=stoi(argv[2]);
    int n=kill(id,signo);
    if(n != 0)
    {
        perror("kill");
    }

    return 0;
}

//mytest.cc

#include<iostream>
#include<unistd.h>

int main()
{
    int cnt=0;
    while(true)
    {
        printf("我是一个进程,pid:%d,我正在运行%d\n",getpid(),cnt++);
        sleep(1);
    }
    return 0;
}

在这里插入图片描述
在这里插入图片描述
这个不就是和我们在命令行执行kill命令一样的原理吗。

kill(),可以向任意进程发送任意信号

raise,给自己发送指定信号。----->就相当于 kill(getpid(),任意信号)

在这里插入图片描述

int main()
{
    int cnt=0;
    while(true)
    {
        printf("cnt:%d,pid:%d\n",cnt++,getpid());
        if(cnt == 10)
            raise(9);
        sleep(1);
    }
        return 0;
}

在这里插入图片描述

abort,给自己发送指定的信号(6号信号)。------>相当于kill(getpid(),SIGABRT)

在这里插入图片描述
在这里插入图片描述

int main()
{
    int cnt=0;
    while(true)
    {
        printf("cnt:%d,pid:%d\n",cnt++,getpid());
        if(cnt == 10)
           abort();
        sleep(1);
    }
        return 0;
}

在这里插入图片描述

关于信号处理的行为的理解:有很多的情况,进程收到大部分的信号,默认处理动作都是终止进程。

既然大部分信号默认都是终止进程,那有那么多类的信号有什么用?

信号的意义:信号的不同,代表不同的事情,但是对事情发生之后的处理可以一样。
也就是说进程意外终止了,我们可以根据信号不同来确定是什么原因导致的。

2.3硬件异常产生信号

信号产生,不一定非得是用户显示发送的。

看下面一段代码

int main()
{
    int cnt=0;
    while(true)
    {
         printf("cnt:%d,pid:%d\n",cnt++,getpid());
         int a=10;
         a/=0;       
    }
    return 0;
}

在这里插入图片描述

为什么除0会终止进程?
因为当前进程会收到来自OS发送的信号。SIGPFE。
在这里插入图片描述
在这里插入图片描述

如何证明呢?

void handler(int signo)
{
    cout<<"进程捕捉到了一个信号,信号编号是:"<<signo<<endl;
}

int main(int argc,char* argv[])
{
    signal(SIGFPE,handler);
    int cnt=0;
    while(true)
    {
         printf("cnt:%d,pid:%d\n",cnt++,getpid());
         int a=10;
         a/=0;       
    }
     return 0;
}

在这里插入图片描述
我确实捕捉到了8号信号,但为什么OS一直发送信号呢?
在这里插入图片描述
难道是我这里一直在死循环的原因?

修改一下代码

int main()
{
    signal(SIGFPE,handler);
    int cnt=0;
    int a=10;
    a/=0;   
    while(true)
    {
        printf("cnt:%d,pid:%d\n",cnt++,getpid());
    }
    return 0;
}

在这里插入图片描述
发现还是一直在发送8号信号。
这到底是为什么?

先来解答,OS如何得知应该给当前进程发送8号信号呢?或OS怎么知道我除0了呢?

在这里插入图片描述
CPU运算异常了,OS会不会知道?
OS肯定会知道CPU运算出现了问题,因为OS是软硬件资源的管理者。

OS查看到状态寄存器溢出位由0->1,OS就识别到CPU内部出错了。
谁导致CPU出错了?
CPU当前正在调度谁,就是那个进程出现了问题,OS向目标进程发送8号信息,目标进程收到8号信号,后序处理就会终止自己了。

那为什么一直发信息呢?
收到信号,不一定会引起进程退出,没有退出,进程可能还会被CPU调度。
CPU内部的寄存器只有一份,但是寄存器种中的内容,属于当前进程的上下文,CPU内部状态寄存器溢出标记位由0->1,你是没有能力或者动作去修改这个问题的。
当进程被切换的时候,就有无数次状态寄存器被保存和恢复的过程,所以每一次恢复的时候,就让OS识别到了CPU内部的状态寄存器中标记位是1,每一次都会发8号信号。

再看一种由硬件异常产生的信号。

int main()
{
    signal(SIGFPE,handler);
    int cnt=0; 
    while(true)
    {
        printf("cnt:%d,pid:%d\n",cnt++,getpid());
        int* ptr=NULL;
        *ptr=10;
    }
    return 0;
}

在这里插入图片描述

为什么野指针就奔溃了?
因为OS会给当前进程发送指定的11号信号。

在这里插入图片描述
在这里插入图片描述

证明一下。

void handler(int signo)
{
    cout<<"进程捕捉到了一个信号,信号编号是:"<<signo<<endl;
}


int main()
{
    signal(11,handler);
    int cnt=0; 
    while(true)
    {
        printf("cnt:%d,pid:%d\n",cnt++,getpid());
        int* ptr=NULL;
        *ptr=10;
    }
    return 0;
}

在这里插入图片描述

OS怎么知道我野指针了呢?

在这里插入图片描述
根据我们以前学的知识,虚拟地址—>物理地址的转换,要经过页表。今天我要告诉你除了页表还有一种硬件MMU。MMU是内存管理单元。
在这里插入图片描述
MMU其实是通过读取页表中的内容,在内部形成对应的物理地址,然后再去访问我们对应的物理地址。
在这里插入图片描述
当我们ptr解引用,访问的是0号地址。经过页表映射,发现在映射的时候,当前进程是不允许去访问对应的0号地址的。不允许访问当然可以拦截不让你访问。但更重要的是,你为什么会访问,所以OS觉得你犯错了就应该付出相应的代价,所以MMU这个硬件因为对应的越界访问(野指针访问)发送异常。OS知道当前硬件发生异常,所以OS将异常转换成11号信号发送给目标进程。

2.4软件条件

在管道我们说过匿名管道的一个场景,读端关闭,写端一直写没有任何意义,OS会给当前写进程发送SIGPIPE信号,然后进程终止了。

所谓的进程,OS,管道,尤其是管道和这一整套OS发信号的原因和OS发信号的过程,和硬件都没有关系。而是仅仅因为读端关闭了这一软件条件所触发的OS发送信号给目标进程,这种场景我们就称之为软件条件会触发信号。
在这里插入图片描述

下面我们要说的是一种定时器软件条件。给当前进程设定闹钟,alarm()

在这里插入图片描述
设置一个时钟时刻发送信号。

seconds:多少秒之后发送信号
返回值是0或者是以前设定的闹钟时间还余下的秒数

在这里插入图片描述
发送的是SIGALRM(14)信号。

int main()
{
	//这个闹钟是给现在设的还是给未来设的?
	//是不是我调用了alarm,我的进程会立马收到对应的闹钟呢?
	//答案:并不是。这是给未来设置的闹钟。是1秒之后向我这个进程发信号。
    alarm(1);
    int cnt=0;
    while(true)
    {
        printf("cnt: %d\n",cnt++);
    }
    return 0;
}

在这里插入图片描述

根据运行结果,请问我们这段代码有什么用呢?

其实这是统计1S左右,我们计算机能够将数据累计多次次。

修改一下代码再看一下效果。

int cnt=0;

void catchSig(int signo)
{
    cout<<"进程捕捉到了一个信号,信号编号是:"<<signo<<" cnt :"<<cnt<<endl;
}

int main()
{
    signal(SIGALRM,catchSig);
    alarm(1);
    while(true)
    {
        cnt++;
    }
    return 0;
}

在这里插入图片描述
次数多了很多次,这是因为printf会访问外设,而访问外设比较慢。
还有就是这个闹钟是一次性闹钟,响了之后就不响了。

如果想响多次,要重新在设定闹钟。

void catchSig(int signo)
{
    cout<<"进程捕捉到了一个信号,信号编号是:"<<signo<<" cnt :"<<cnt<<endl;
    alarm(1);
}

在这里插入图片描述

alarm(0),取消闹钟,并且返回闹钟剩下多少时间。

int main(int argc,char* argv[])
{
    signal(SIGALRM,catchSig);
    alarm(5);
    while(true)
    {
        cnt++;
        if(cnt == 3)
        {
        	int n=alarm(0);
        	cout<<n<<endl;
        }
        sleep(1);
    }
    return 0;
}

在这里插入图片描述

为什么设闹钟就是软件条件了呢?
"闹钟"其实就是用软件条件实现的。

在这里插入图片描述

2.5总结

1.上面所说的所有信号产生,最终都要有OS来进行执行,为什么?

OS是进程的管理者

  1. 信号的处理是否是立即处理的?

在合适的时候(什么合适的时候,下面说)。

3.信号如果不是被立即处理,那么信号是否需要暂时被进程记录下来?记录在哪里最合适呢?
4.一个进程在没有收到信号的时候,能否能知道,自己应该对合法信号作何处理呢?
5.如何理解OS向进程发送信号?能否描述一下完整的发送处理过程?

上面的问题,我们都可以从接下来信号的学习中得到答案。

信号产生这里还有最后一个问题。

man 7 signal  //信号手册

在这里插入图片描述
Stop暂停进程,Cont继续进程,Ign忽略进程(这个信号说完最后面解释)这些都没有问题。
Term,Core都是终止进程,有什么区别?
其实这有关于,进程退出时,核心转储问题

看下面一段代码

int main()
{
    //核心转储
    while(true)
    {
        int a[10];
        a[100]=10;
    }
    return 0;
}

在这里插入图片描述

int main()
{
    //核心转储
    while(true)
    {
        int a[10];
        a[1000]=10;
    }
    return 0;
}

在这里插入图片描述
数组明明都越界了啊,怎么进程没有奔溃报错?
其实在C的时候就说过,数组越界不一定会报错,因为对数组的检查是随机的。这是我们在语言层面的理解。

int main()
{
    //核心转储
    while(true)
    {
        int a[10];
        a[10000]=10;
    }
    return 0;
}

在这里插入图片描述
那这次怎么就检测出来了。按照语言层面解释可能是因为这次越界被检测到了。

接下来我们从底层理解:

编译器上编译你的代码时,在栈上给你开辟多大空间和编译器是强相关的,你要申请10个int大小元素的数组,它确实给你的就是10个元素,指的是数组的元素,但是并不代表给你的代码块或者函数分配栈帧结构是10个元素的大小,可能给你的会很大,所以呢,即便你越界了,但是你还是在有效栈区里,所以没有报错,除非你访问了一个完全不是你的空间。比如你现在访问的时候,访问的是系统的地址空间中或者访问到一个不让你访问的区域,那么此时OS系统就能识别出来。所以OS在识别越界的问题上有可能也死别不出来,从而出现把数据改变了,但用户不知情的情况。

在这里插入图片描述
这个信号是11号信号,段错误,它的终止方式是Core。
像Trem这种结束,是正常结束,OS不会做额外操作的。而以Core这种结束,OS除了终止进程,它还要做其他工作。

但是以Core为终止,我也没见OS做什么额外工作啊, 除了给我打印出一个错误描述,像Trem终止进程不也是给我打印出一个错误描述吗。

在云服务器上,默认如果进程是Core退出的,我们暂时看不到明显现象,如果想看到需要打开一个选项。

ulimit -a  //可以看到系统给我们当前资源设置的上限

在这里插入图片描述
core file size 大小为0,这是云服务器默认关闭了core file选项。
想要打开,ulimit就带上你想要设置谁,-c(选项),大小为多少。

ulimit -c 1024  //打开云服务器core file选项,默认可以向OS中形成最大为1024个block的数据块

然后运行同样的代码
在这里插入图片描述
相比较我们之前运行的时候,除了段错误后面还跟了一个(core dumped)
在这里插入图片描述
发现我们当前目录下多了一个以core命名的文件。
在这里插入图片描述
所谓的核心转储:当进程出现异常的时候,我们将进程在对应的时刻,在内存中的有效数据(二进制数据)转储到磁盘中。

该文件我们用vim打开是一堆乱码。我们是无法识别的。
那形成核心转储有什么意义呢?或者说为什么要有核心转储?

一般进程在运行的时候出现崩溃,其实我们更想知道的是,为什么会崩溃,在哪里崩溃。所以OS为了便于我们后期做调试,会将进程在运行期间出现崩溃的代码的相关上下文数据全部dump到磁盘中,用来进行支持调试

如何支持呢?
linux下默认编译都是release不能调试,debug才能调试,因此我们编译时带上-g选项。
在这里插入图片描述

在这里插入图片描述
当前自动帮我们评判,进程收到11号信号引起的段错误,报错是在mysignal.cc的第37行,代码是a[10000]=10引起的错误。直接就帮我们找到了错误。
这种直接快速定位到出问题的方式,我们称之为事后调试。

在这里插入图片描述

在这里插入图片描述
像这种以2号信号,Trem终止进程,并不会在当前目录下形成core文件。

Trem,Core都是进程终止,它们的区别是,以Core退出的可以被核心转储的以便于后序快递定位问题,以Trem退出就是正常终止进程。

以后进程出现异常退出,你可以查看是什么信号的什么行为导致的,如果是Core,把Core打开,再执行一下,gdb快速定位问题。

信号产生到目前为止差不多讲完了,但这里可能有人会有这样的疑问。如果我们把所有信号都捕捉,换成自定义动作,不让进程退出,那进程是不是无法被杀死了。

void catchSig(int signo)
{
    cout<<"进程捕捉到了一个信号,信号编号是:"<<signo<<endl;
}

int main()
{
    for(int signo=1;signo<=31;++signo)
    {
        signal(signo,catchSig);
    }
    while(true) sleep(1);
    
    return 0;
}

在这里插入图片描述
难道真的无法杀死了?
在这里插入图片描述
kill -9还是可以杀死进程,无论你怎么修改,无法对9号信号设定捕捉,即使你做了,OS也不会给你设置。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/200342.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux系统之一次性计划任务at命令的基本使用

Linux系统之一次性计划任务at命令的基本使用 一、at命令介绍二、at命令的使用帮助2.1 at命令的help帮助信息2.2 at命令的语法解释 三、at命令的日常使用3.1 立即执行一次性任务3.2 指定时间执行一次性任务3.3 查询计划任务3.4 其他指定时间用法3.5 删除已经设置的计划任务3.6 显…

windows环境下载安装Nginx并配置防火墙

1、下载Nginx Nginx官网 下载稳定版 2、下载之后&#xff0c;解压 3、启动Nginx&#xff0c;命令&#xff1a;start nginx 最小化该窗口 主要&#xff0c;不要关闭&#xff0c;如果关闭&#xff0c;表示nginx服务关闭了 4、测试是否启动成功 在浏览器中输入http://localhos…

独家揭秘!8种平面设计类型,你都了解吗?

当我们谈起平面设计时&#xff0c;大部分人可能会误以为平面设计只局限于处理二维&#xff08;2D&#xff09;元素&#xff0c;例如设计logo或海报等。这实际上是一个普遍的误解。事实上&#xff0c;平面设计的定义和应用范围要远远超越这个简单的概念。它更多的是采用各种平面…

YOLOv7独家原创改进:自研独家创新MSAM注意力,通道注意力升级,魔改CBAM

💡💡💡本文自研创新改进:MSAM(CBAM升级版):通道注意力具备多尺度性能,多分支深度卷积更好的提取多尺度特征,最后高效结合空间注意力 1)作为注意力MSAM使用; 推荐指数:五星 MSCA | 亲测在多个数据集能够实现涨点,对标CBAM。 在道路缺陷检测任务中,原始ma…

WPF前端实现人脸扫描动画效果

前言 本章实现的效果主要通过OpacityMask与LinearGradientBrush(径向渐变) 的组合应用来实现。最终实现效果如下: LinearGradientBrush线性渐变画刷 LinearGradientBrush其实很简单,我们只需要关注5个属性,使用这5个属性你就可以完成这个画刷几乎所有的变化。 属性介…

代码随想录算法训练营第36天| 435. 无重叠区间 763.划分字母区间 56. 合并区间

JAVA代码编写 435. 无重叠区间 给定一个区间的集合 intervals &#xff0c;其中 intervals[i] [starti, endi] 。返回 需要移除区间的最小数量&#xff0c;使剩余区间互不重叠 。 示例 1: 输入: intervals [[1,2],[2,3],[3,4],[1,3]] 输出: 1 解释: 移除 [1,3] 后&#x…

【ASP.NET CORE】.NET 6.0 NET CORE MVC连接SQLSERVER数据库

项目装NuGet包&#xff0c;具体版本如下 在appsettings.json中&#xff0c;添加连接字符串 代码如下&#xff1a; "ConnectionStrings": {"MVCSqlContext": "Serverlocalhost;DatabaseAddress;User IDsa;Passwordsa;TrustServerCertificatetrue&q…

During handling of the above exception, another exception occurred解决方案

During handling of the above exception, another exception occurred解决方案 前言解决方案总结 前言 今天在写python读取图片中的内容的脚本的时候&#xff0c;常用的图像处理库包括Pillow和OpenCV。以下是使用Pillow库读取图片中的计算公式的示例代码&#xff1a; from P…

第五节HarmonyOS ArkTS声明式开发范式

ArkTS声明式开发范式&#xff1a; 规范中各个内容说明如下&#xff1a; 装饰器 1、基本UI装饰器Entry、Component Entry 装饰struct&#xff0c;页面的入口。 Component 装饰struct&#xff0c;表示该struct具有基于组件的能力。 2、数据装饰器State、Prop、Link State…

STM32CubeMX HAL F405 TIM1输出多路不同频率及占空比的方波(PWM)(输出比较模式)

TIM1_CH1 TIM1_CH1N TIM1_CH2 TIM1_CH2N TIM1_CH3 TIM1_CH3N TIM1_CH4 TIM1的通道1、2、3输出同频率&#xff08;20KHz&#xff09;的PWM波形(占空比50%) TIM1的通道1输出100Hz的PWM波形(占空比50%) #include "tim.h"/* USER CODE BEGIN 0 */ uint16_t f1 100;…

resty-http库爬虫程序代码示例

lua -- 导入需要的库 local http require "resty.http" local io require "io" -- 创建一个客户端 local client http.new() -- 设置HTTP客户端的 client:set_proxy(proxy_host, proxy_port) -- 执行HTTP GET请求&#xff0c;获取网页内容 local res…

低功耗蓝牙模块在农业技术中的创新应用

农业技术的不断演进对于提高农业生产效率和可持续性至关重要。本文将深入研究低功耗蓝牙模块在农业技术中的创新应用&#xff0c;探讨其在农业传感器网络、智能灌溉系统、畜牧追踪等方面的优势&#xff0c;以推动农业领域向数字化、智能化的方向发展。 随着全球人口的增长和气候…

51综合程序01-DAC转换输出波形

文章目录 DAC转换输出波形使用DA转换输出正弦波&#xff0c;三角波&#xff0c;锯齿波&#xff08;1&#xff09;仿真电路图&#xff08;2&#xff09;源代码&#xff08;3&#xff09;实验结果 DAC转换输出波形 使用DA转换输出正弦波&#xff0c;三角波&#xff0c;锯齿波 &…

如何判断哪种屋顶适合安装光伏板?

随着国家对可再生能源的推广和大力发展&#xff0c;光伏板开始被越来越多人所熟知。而将光伏板安装在家庭楼顶上&#xff0c;不仅可以有效节省土地和楼房面积&#xff0c;还能够为家庭提供更多的经济和环保效益&#xff0c;成为了越来越多人的选择。哪种屋顶适合安装光伏板呢&a…

ESP32-Web-Server 实战编程-通过网页控制设备的 GPIO

ESP32-Web-Server 实战编程-通过网页控制设备的 GPIO 概述 前述博客讲解了 Web 编程的基本知识&#xff0c;包括 HTML、CSS、JavaScript 三个部分&#xff0c;从这节开始&#xff0c;我们进入实战部分&#xff0c;在实际项目中进一步学习 ESP32-Web 编程。 GPIO &#xff08…

leetCode 40.组合总和 II + 回溯算法 + 剪枝 + used数组 + 图解

给定一个候选人编号的集合 candidates 和一个目标数 target &#xff0c;找出 candidates 中所有可以使数字和为 target 的组合。candidates 中的每个数字在每个组合中只能使用 一次 注意&#xff1a;解集不能包含重复的组合 示例 1: 输入: candidates [10,1,2,7,6,1,5], t…

linux安装minIo(亲测可用)

一、创建文件夹 进入opt文件夹 cd /opt/创建minio文件夹&#xff1b; mkdir minio赋予权限 chmod 777 minio/执行完后查看目录 进到minio文件夹 创建bin目录 mkdir bin创建data目录 mkdir data创建log touch minio.log创建start.sh文件&#xff0c;并写入数据(不会vi或…

搞定这三个问题 伦敦金止损就没问题

笔者多次强调&#xff0c;做伦敦金交易&#xff0c;重要的是风险控制。而止损是我们风险控制中一个很重要的概念。设定好止损&#xff0c;就是风险控制的好开始。下面我们通过三个问题&#xff0c;来解决止损的问题。 问题一&#xff0c;你的止损位在哪里&#xff1f;要做止损&…

多目标水母搜索算法(MOJS)求解微电网优化MATLAB

一、微网系统运行优化模型 微电网优化模型介绍&#xff1a; 微电网多目标优化调度模型简介_IT猿手的博客-CSDN博客 二、多目标水母搜索算法MOJS 多目标水母搜索算法&#xff08;Multi-Objective Jellyfish Search algorithm&#xff0c;MOJS&#xff09;由Jui-Sheng Chou等…

软工2021上下午第六题(组合模式)

阅读下列说明和Java代码&#xff0c;将应填入&#xff08;n&#xff09;处的字句写在答题纸的对应栏内。 【说明】 层叠菜单是窗口风格的软件系统中经常采用的一种系统功能组织方式。层叠菜单中包含的可能是一个菜单项&#xff08;直接对应某个功能&#xff09;&#xff0c;也可…