为什么Redis这么快?5分钟成为Redis高手

Redis简介

Redis 是 C 语言开发的一个开源高性能键值对的内存数据库,可以用来做数据库、缓存、消息中间件等场景,是一种 NoSQL(not-only sql,非关系型数据库)的数据库。

Redis特点

优秀的性能,数据是存储在内存中,读写速度非常快,可支持并发10W QPS。

  • 单线程单进程,是线程安全的,采用 IO 多路复用

  • 可作为分布式锁

  • 支持十种数据类型

  • 支持数据持久化

可以作为消息中间件使用,支持消息发布及订阅。

数据类型

下表是我列举的常用五种数据类型的特性及其使用场景:

缓存

数据缓存是 Redis 最重要的一个场景,为缓存而生,在 springboot 中,一般有两种使用方式:

  • 直接通过 RedisTemplate 使用

  • 通过 Spring Cache 集成 Redis(也就是注解的方式)

使用缓存遇到的问题

(1)数据一致性

在分布式环境下,缓存和数据库很容易出现数据一致性问题,如果项目对缓存的要求是强一致性,那就不要使用缓存。

我们只能在项目中使用策略降低缓存与数据库一致性的概率,是无法保障两者的强一致性,一般策略包括缓存更新机制,更新数据库后及时更新缓存、缓存失败时增加重试机制。

(2)缓存雪崩

在了解雪崩溃之前,我们先了解什么是缓存雪崩现象,假设A系统每秒需要处理5000个请求,但数据库每秒只能处理 4000 个请求,某一天,缓存机器出现了宕机,挂了,这时候所有的请求一下子全部落在数据库上,数据库肯定扛不住,报警挂掉了,这时候如果没有采取缓存设施,数据库又急着用,重新重启数据库,刚重启完成(有可能没启动完),请求又进来了,数据库立马挂掉。

这就是雪崩事件,是 Redis 缓存中最致命问题之一(有一个是穿透)。大家可以看看下图:

出现雪崩事件后不要急不要慌,我们可以在事故前中后三个方面来思考解决方案:

  • 事故前:redis 高可用方案,主从+哨兵,集群方案,避免全盘崩溃;

  • 事故中:较少数据库的压力,本地 Ehcache 缓存+限流及降级,避免超过数据库承受压力;

  • 事故后:做 Redis 持久化,一旦 Redis 重启,可从磁盘中快速恢复数据。

我们来看看改造后的数据流程,假设用户A发送一个请求,系统先请求本地 Ehcache 是否有数据,如果没有再去 Redis 请求数据,如果没有再去数据库请求数据,获取到数据后同步到 Ehcache 和 redis。

限流组件的作用:可以设置每秒请求数次,有多少通过请求,剩余的未通过的可以走降级处理,返回一些默认的值,或者友情提示等默认操作。具体流程可以看看下图:

这样做的好处是:

  • 数据库安全:在限流组件可用的情况下,数据库不会挂掉,限流根据确保了每秒多少请求能通过;

  • 部分请求可以被处理:数据库没挂,就意味着至少2/5的请求可以被处理掉;

  • 高峰时期部分请求无法处理到,需要用户多次点击,因为只有 2/5 的请求被处理,剩下的请求,用户刷不出来界面,需要多点击几次;

  • redis 设置的缓存失效时间不是设置成同一个时间,可根据功能、业务、请求接口灵活设置缓存时间:setRedis(key, value, time+Math.random()*10000);

(3)缓存穿透

缓存穿透是指缓存和数据库中都没有的数据,用户(黑客)不断发起请求,导致请求直接查询数据库,这种恶意行为攻击场景的会直接导致数据库挂掉,数据流程如下图所示:

处理这种情况相对比较简单点,这种情况是绕过redis或本地缓存直接到达数据库,可以采取以下方案:

  • 在请求接口层可以做一些校验,比如用户签权、参数校验,不合法的请求直接return;

  • 还可以针对有效id做认证或直接拦截,不符合的 id 直接过滤或采用统一key保存到redis,下次不合法的id请求时,直接到缓存中获取数据;

  • 采用 redis 的高级接口 Bloom Filter,利用高效的数据结构和算法快速判断出你这个 Key 是否在数据库中存在,不存在你 return 就好了,存在你就去查 DB 刷新 KV 再 return。

(4) 缓存击穿

上面讲的穿透是针对大面积数据请求,那么击穿是针对一点(一个key)来来导致redis异常,但某个key是非常热点,请求非常频繁,处于集中式访问现象,当这个key失效(过期)时,大量的请求就会击穿了缓存,直接请求数据库,就像在屏障中凿开了一个洞。

不同场景下缓存击穿解决方案

  • 数据基本不变:热点数据value基本不更新时,可以设置成永不过期

  • 数据更新不频繁:缓存刷新流程耗时较少时,可采用redis、zookeeper等分布式中间件的分布式互斥锁或者本地互斥锁保证少量的请求能请求到数据库并重新更新缓存,其他的流程等锁释放后才可以访问新缓存

  • 数据更新频繁:采用定时线程,在缓存过期前主动重新构建缓存或延长过期时间,保证所有的请求能一直访问缓存

为什么 Redis 这么快

Redis 官方介绍可以达到10W+的QPS,这个数据不比 MEMCache 差,而且 Redis 是单进程单线程的模型,完全基于内存的操作,CPU 不是 Redis 的瓶颈,Redis 的瓶颈是内存及网络带宽,有以下特点:

  • 使用类似于 HashMap 的原理,HashMap 的查询及操作的时间复杂度是O(1),且绝大多数请求是纯碎的内存操作,数据存在内存中;

  • 数据结构简单,对数据操作也简单,基于KV;

  • 不错死锁现象采用单线程操作,避免了不必要的上下文切换及竞争条件,不存在CPU切换现象,也就不存在考虑各种锁的问题;

  • 使用非阻塞IO,多路复用IO模型。

Redis 淘汰策略

  • volatile为前缀的策略都是从已过期的数据集中进行淘汰。

  • allkeys为前缀的策略都是面向所有key进行淘汰。

  • LRU(least recently used)最近最少用到的。

  • LFU(Least Frequently Used)最不常用的。

  • 它们的触发条件都是Redis使用的内存达到阈值时。

Redis持久化

Redis 持久化策略有两种:

  • RDB:快照形式是直接把内存中的数据保存到一个 dump 的文件中,定时保存,保存策略。

  • AOF:把所有的对 Redis 的服务器进行修改的命令都存到一个文件里,命令的集合。Redis 默认是快照 RDB 的持久化方式。

如果非常关心你的数据,但仍然可以承受数分钟内的数据丢失,那么可以额只使用 RDB 持久。

AOF 将 Redis 执行的每一条命令追加到磁盘中,处理巨大的写入会降低Redis的性能,不知道你是否可以接受。

数据库备份和灾难恢复:定时生成 RDB 快照非常便于进行数据库备份,并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度快。

当然了,Redis 支持同时开启 RDB 和 AOF,系统重启后,Redis 会优先使用 AOF 来恢复数据,这样丢失的数据会最少。

Redis主从复制

  • 从节点执行 slaveof[masterIP][masterPort],保存主节点信息;

  • 从节点中的定时任务发现主节点信息,建立和主节点的 Socket 连接;

  • 从节点发送 Ping 信号,主节点返回 Pong,两边能互相通信;

  • 连接建立后,主节点将所有数据发送给从节点(数据同步);

  • 主节点把当前的数据同步给从节点后,便完成了复制的建立过程;

    接下来,主节点就会持续的把写命令发送给从节点,保证主从数据一致性。

Redis哨兵模式

我们先说说主从复制会存在问题:

  • 一旦主节点宕机,从节点晋升为主节点,同时需要修改应用方的主节点地址,还需要命令所有从节点去复制新的主节点,整个过程需要人工干预。

  • 主节点的写能力受到单机的限制。

  • 主节点的存储能力受到单机的限制。

  • 原生复制的弊端在早期的版本中也会比较突出,比如:

    Redis 复制中断后,从节点会发起 psync。

  • 此时如果同步不成功,则会进行全量同步,主库执行全量备份的同时,可能会造成毫秒或秒级的卡顿。

哨兵的架构模式如下:

该系统可以执行以下四个任务:

  • 监控:不断检查主服务器和从服务器是否正常运行。

  • 通知:当被监控的某个 Redis 服务器出现问题,Sentinel 通过 API 脚本向管理员或者其他应用程序发出通知。

  • 自动故障转移:当主节点不能正常工作时,Sentinel 会开始一次自动的故障转移操作,它会将与失效主节点是主从关系的其中一个从节点升级为新的主节点,并且将其他的从节点指向新的主节点,这样人工干预就可以免了。

  • 配置提供者:在 Redis Sentinel 模式下,客户端应用在初始化时连接的是 Sentinel 节点集合,从中获取主节点的信息。

来源:https://www.jianshu.com/p/0a1c9fc23c01

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/199719.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++学习之路(十)C++ 用Qt5实现一个工具箱(增加一个时间戳转换功能)- 示例代码拆分讲解

上篇文章,我们用 Qt5 实现了在小工具箱中添加了《JSON数据格式化》功能,还是比较实用的。为了继续丰富我们的工具箱,今天我们就再增加一个平时经常用到的功能吧,就是「 时间戳转换 」功能,而且实现点击按钮后文字进行变…

Java基础之原码,反码,补码,位运算符

文章目录 前言一、二进制在运算中介绍二、原码&#xff0c;反码&#xff0c;补码&#xff08;针对有符号的&#xff09;三、位运算符按位与&按位或 |按位异或 ^按位取反 ~算术右移>>算术左移<<逻辑右移>>> 总结 前言 原码&#xff0c;反码&#xff0…

数字人透明屏幕的技术原理是什么?

数字人透明屏幕的技术原理主要包括人脸识别和全息影像技术。其中&#xff0c;人脸识别技术是通过摄像头捕捉游客的面部表情和动作&#xff0c;并将其转化为数据指令&#xff0c;以便与数字人物进行互动。而全息影像技术则是利用透明屏幕&#xff0c;通过全息投影的方式将数字人…

rider编辑器抛出异常 忽略try catch

如题 代码加了try catch 后用户使用体验是好了 但开发过程中 报错了不方便排查 启用这些配置后 trycatch里的异常也会抛出 补充一下默认配置,方便还原

【LeetCode:1670. 设计前中后队列 | 数据结构设计】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

21.Oracle的程序包(Package)

Oracle的程序包Package 一、Package的概述1、什么是Oracle11g的Package2、Package的作用是什么3、常见的系统内置Package 二、创建Package的相关语法1、Package的创建语法2、Package的删除3、具体案例4、Package的使用5、与Package相关的其他语法 三、常见内置程序包的使用1、…

MYSQL存储

注意&#xff1a; 1.如果没有指定的SESSION/GLOBAL&#xff0c;默认是SESSION&#xff0c;会话变量。 2.mysql服务重新启动之后&#xff0c;所设置的全局参数会失效&#xff0c;要想不失效&#xff0c;可以在/etc/my.cnf中配置。 变量 用户定义变量是用户根据需要自己定义变量…

二十章 多线程

线程简介 在 Java 中&#xff0c;并发机制非常重要。在以往的程序设计中&#xff0c;我们都是一个任务完成后再进行下一个任务&#xff0c;这样下一个任务的开始必须等待前一个任务的结束。Java 语言提供了并发机制&#xff0c;程序员可以在程序中执行多个线程&#xff0c;每一…

项目中的svg图标的封装与使用

1.安装 npm install vite-plugin-svg-icons -D2.在vite.config.ts中配置 **所有的svg图标都必须放在assets/icons // 引入svg import { createSvgIconsPlugin } from vite-plugin-svg-iconsexport default defineConfig({plugins: [vue(),createSvgIconsPlugin({iconDirs: [p…

PWM 正玄波形 通过C语言生成

#include <stdio.h> #include <math.h> #include <stdint.h>#define SAMPLE_POINT_NUM (200) /* 需要生成的点的个数 */ #define SINE_MAX (255) /* sin 函数幅值 */ #define PI (3.14…

共享充电宝被取代,共享WIFI项目将成市场趋势!

在创业领域如果有这样一个项目&#xff0c;你会选择哪一个&#xff1f;前者投资十万风险大&#xff0c;后者投资几千风险小。同样需要扫街地推&#xff0c;但产生的利润是相同的。相信100%的人会选择后者。实际上这两个项目前者就是共享电宝&#xff0c;后者就是共享WiFi项目。…

ground truth 在深度学习任务中代表的是什么意思?

1、概念 在深度学习领域&#xff0c;ground truth (中文意思是“地面真实值”或“基准真实值”&#xff0c;简单理解就是真实值) 是指用于训练和评估模型的准确标签或数据。它是机器学习算法的参考标准&#xff0c;用于衡量模型的性的和判断模型的准确性&#xff0c;本文将介绍…

【傻瓜级JS-DLL-WINCC-PLC交互】4.DLL读取WINCC内部变量

思路 JS-DLL-WINCC-PLC之间进行交互&#xff0c;思路&#xff0c;先用Visual Studio创建一个C#的DLL控件&#xff0c;然后这个控件里面嵌入浏览器组件&#xff0c;实现JS与DLL通信&#xff0c;然后DLL放入到WINCC里面的图形编辑器中&#xff0c;实现DLL与WINCC的通信。然后PLC与…

一名技术Leader应该是创作者

今天看了一本书叫做《黑客与画家》。它里面提到一个很重要的概念就是黑客&#xff08;优秀的程序员&#xff09;是一名建筑师&#xff0c;而不是一名工程师。 传统的主管和互联网的Leader 这两者有什么区别呢&#xff1f;关键点在于建筑师是思考做什么&#xff0c;而工程师是…

数据结构(超详细讲解!!)第二十五节 树与森林

1.树的存储结构 和线性表一样&#xff0c;树可以用顺序和链式两种存储结构。 树的顺序存储结构适合树中结点比较“满”的情况。根据树的非线性结构特点&#xff0c;常用链式存储方式来表示树。树常用的存储方法有&#xff1a;双亲表示法、孩子表示法和孩子兄弟表…

【LeetCode刷题-链表】--86.分隔链表

86.分隔链表 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}* ListNode(int val) { this.val val; }* ListNode(int val, ListNode next) { this.val val; this.next next; }* }*/ class…

SpringSecurity+JWT实现权限控制以及安全认证

一.简介 Spring Security 是 Spring家族中的一个安全管理框架。相比与另外一个安全框架Shiro&#xff0c;它提供了更丰富的功能&#xff0c;社区资源也比Shiro丰富。 认证&#xff1a;验证当前访问系统的是不是本系统的用户&#xff0c;并且要确认具体是哪个用户​ 授权&…

虚幻学习笔记3—UI跟随弹窗

一、前言 本文使用的虚幻引擎5.3.2&#xff0c;继点击场景3D物体的两种处理方式的基础完成对3D物体的点击触发后&#xff0c;我们需要制作一个可以弹窗显示该物体信息的UI面板&#xff0c;同时保证弹窗可以跟随物体。另外还讲了一种UI上的悬浮提示跟随弹窗。 二、实现 2.1、创…

Pytorch:torch.utils.data.DataLoader()

如果读者正在从事深度学习的项目&#xff0c;通常大部分时间都花在了处理数据上&#xff0c;而不是神经网络上。因为数据就像是网络的燃料&#xff1a;它越合适&#xff0c;结果就越快、越准确&#xff01;神经网络表现不佳的主要原因之一可能是由于数据不佳或理解不足。因此&a…

ArcGIS Pro、Python、USLE、INVEST模型等多技术融合的生态系统服务构建生态安全格局

近年来&#xff0c;由于社会经济的快速发展和人口增长&#xff0c;社会活动对环境的压力不断增大&#xff0c;人地矛盾加剧。虽然全球各国在生态环境的建设和保护上已取得不少成果&#xff0c;但还是未从根本上转变生态环境的恶化趋势&#xff1b;生态破坏、环境退化、生物多样…