软著项目推荐 深度学习二维码识别

文章目录

  • 0 前言
  • 2 二维码基础概念
    • 2.1 二维码介绍
    • 2.2 QRCode
    • 2.3 QRCode 特点
  • 3 机器视觉二维码识别技术
    • 3.1 二维码的识别流程
    • 3.2 二维码定位
    • 3.3 常用的扫描方法
  • 4 深度学习二维码识别
    • 4.1 部分关键代码
  • 5 测试结果
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 python+opencv+深度学习实现二维码识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 二维码基础概念

2.1 二维码介绍

二维条码/二维码(2-dimensional bar
code)是用某种特定的几何图形按一定规律在平面(二维方向上)分布的、黑白相间的、记录数据符号信息的图形;在代码编制上巧妙地利用构成计算机内部逻辑基础的“0”、“1”比特流的概念,使用若干个与二进制相对应的几何形体来表示文字数值信息,通过图象输入设备或光电扫描设备自动识读以实现信息自动处理:它具有条码技术的一些共性:每种码制有其特定的字符集;每个字符占有一定的宽度;具有一定的校验功能等。同时还具有对不同行的信息自动识别功能、及处理图形旋转变化点。

2.2 QRCode

常见的二维码为QR Code,QR全称Quick Response,是一个近几年来移动设备上超流行的一种编码方式,它比传统的Bar
Code条形码能存更多的信息,也能表示更多的数据类型。

2.3 QRCode 特点

1、符号规格从版本1(21×21模块)到版本40(177×177 模块),每提高一个版本,每边增加4个模块。

2、数据类型与容量(参照最大规格符号版本40-L级):

  • 数字数据:7,089个字符
  • 字母数据: 4,296个字符
  • 8位字节数据: 2,953个字符
  • 汉字数据:1,817个字符

3、数据表示方法:

  • 深色模块表示二进制"1",浅色模块表示二进制"0"。

4、纠错能力:

  • L级:约可纠错7%的数据码字
  • M级:约可纠错15%的数据码字
  • Q级:约可纠错25%的数据码字
  • H级:约可纠错30%的数据码字

5、结构链接(可选)

  • 可用1-16个QR Code码符号表示一组信息。每一符号表示100个字符的信息。

3 机器视觉二维码识别技术

3.1 二维码的识别流程

在这里插入图片描述

首先, 对采集的彩色图像进行灰度化, 以提高后继的运行速度。

其次, 去除噪声。 采用十字形中值滤波去除噪音对二码图像的干扰主要是盐粒噪声。

利用灰度直方图工具, 使用迭代法选取适当的阈值, 对二维码进行二值化处理,灰度化 去噪 二值化 寻找探测图形确定旋转角度 定位 旋转
获得数据使其变为白底黑色条码。

最后, 确定二维码的位置探测图形, 对条码进行定位, 旋转至水平后, 获得条码数据,
以便下一步进行解码。

3.2 二维码定位

QR 码有三个形状相同的位置探测图形, 在没有旋转的情况下, 这三个位置探测图形分别位于 QR 码符号的左上角、 右上角和左下角。
三个位置探测图形共同组成图像图形。

在这里插入图片描述

每个位置探测图形可以看作是由 3 个重叠的同心的正方形组成, 它们分别为 7 7 个深色模块、 5 5 个浅模块和 3*3 个深色模块。
位置探测图形的模块宽度比为 1: 1:3: 1: 1。

在这里插入图片描述

这种 1: 1: 3: 1: 1 的宽度比例特征在图像的其他位置出现的可能性很小, 故可以将此作为位置探测图形的扫描特征。 基于此特征,
当一条直线上(称为扫描线) 被黑白相间地截为1: 1: 3:1: 1 时, 可以认为该直线穿过了位置探测图形。

另外, 该扫描特征不受图像倾斜的影响。 对比中的两个 QR 码符号可以发现, 无论 QR码符号是否倾斜, 都符合 1: 1: 3:1: 1 的扫描特征。

在这里插入图片描述

3.3 常用的扫描方法

  1. 在 X 方向进行依次扫描。

(1) 固定 Y 坐标的取值, 在 X 方向上画一条水平直线(称为扫描线) 进行扫描。 当扫描线被黑白相间地截为 1: 1: 3: 1: 1 时,
可以认为该直线穿过了位置探测图形。 在实际判定时, 比例系数允许 0. 5 的误差, 即比例系数为1 的, 允许范围为 0. 5~1. 5, 比例系数为 3
的, 允许范围为 2. 5~3. 5。

(2) 当寻找到有直线穿过位置探测图形时, 记录下位置探测图形的外边缘相遇的第一点和最后一点 A 和 B。 由 A、 B
两点为端点的线段称为扫描线段。将扫描线段保存下来。

在这里插入图片描述

用相同的方法, 完成图像中所有水平方向的扫描。

  1. 在 Y 方向, 使用相同的方法, 进行垂直扫描, 同样保存扫描得到的扫描线段。

扫描线段分类扫描步骤获得的扫描线段是没有经过分类的, 也就是对于特定的一条扫描线段, 无法获知其具体对应于三个位置探测图形中的哪一个。
在计算位置探测图形中心坐标之前, 要将所有的扫描线段按照位置进行归类。 一般采用距离邻域法进行扫描线段的分类。

距离邻域法的思想是: 给定一个距离阈值 dT, 当两条扫描线段的中点的距离小于 d T 时, 认为两条扫描线段在同一个邻域内, 将它们分为一类,
反之则归为不同的类别。

距离邻域法的具体步骤如下:
(1) 给定一个距离阈值 dT , d T要求满足以下条件: 位于同一个位置探测图形之中的任意两点之间的距离小于 dT ,
位于不同位置探测图形中的任意两点之间的距离大于 d T
(2) 新建一个类别, 将第 1 条扫描线段归入其中。
(3) 对于第 i 条扫描线段 l i (2≤i≤n), 做以下操作:

a) 求出 l i 的中点 C i 。

b) 分别计算C i与在已存在的每一个类别中的第一条扫描线段的中点的距离d,若 d<d T , 则直接将 l i 加入相应类别中。

c) 若无法找到 l i 可以加入的类别, 则新建一个类别, 将 l i 加入其中。

(4) 将所有类别按照包含扫描线段的数目进行从大到小排序, 保存前 3 个类别(即
包含扫描线段数目最多的 3 个类别), 其余的视为误判得到的扫描线段(在位置探测图形以外的位置得到的符合扫描特征的扫描线段),
直接舍去。距离邻域法结束后得到的分好 3 个类别的扫描线段就分别对应了 3 个位置探测图形。距离邻域法的关键就是距离阈值的选取。 一般对于不同大小的 QR
码图像, 要使用不同的距离阈值。

(1) 在 X 方向的扫描线段中找出最外侧的两条, 分别取中点, 记为 A、 B。 由 A、 B两点连一条直线。
在这里插入图片描述

(2) 在 Y 方向的扫描线段中找出最外侧的两条, 分别取中点, 记为 C、 D。 由 C、 D两点连一条直线。
在这里插入图片描述

(3) 计算直线 AB 与直线 CD 的交点 O, 即为位置探测图形中心点。

在这里插入图片描述

将 QR 码符号的左上、 右上位置探测图形的中心分别记为 A、 B。 连接 A、 B。 直线 AB 与水平线的夹角α 即为 QR 码符号的旋转角度。

在这里插入图片描述
对于该旋转角度α , 求出其正弦值 sinα 与余弦值 cosα 即可。 具体计算公式如下:
在这里插入图片描述

在这里插入图片描述

位置探测图形边长的计算是基于无旋转图像的, 在无旋转图像中, 水平扫描线段的长度即为位置探测图形的边长。

水平扫描线段 AB 的长度即为位置探测图形的边长 X。

在这里插入图片描述

对于经过旋转的 QR 码图像, 先通过插值算法生成旋正的 QR 码图像, 然后按照如上所述的方法进

4 深度学习二维码识别

基于 CNN 的二维码检测,网络结构如下

在这里插入图片描述

4.1 部分关键代码

篇幅有限,学长在这只给出部分关键代码

首先,定义一个 AlgoQrCode.h

#pragma once
#include 
#include 
using namespace cv;
using namespace std;

class AlgoQRCode
{
private:
	Ptr<wechat_qrcode::WeChatQRCode> detector;

public:
	bool initModel(string modelPath);

	string detectQRCode(string strPath);

	bool compression(string inputFileName, string outputFileName, int quality);

	void release();
};

该头文件定义了一些方法,包含了加载模型、识别二维码、释放资源等方法,以及一个 detector 对象用于识别二维码。

然后编写对应的源文件 AlgoQrCode.cpp

bool AlgoQRCode::initModel(string modelPath) {
	string detect_prototxt = modelPath + "detect.prototxt";
	string detect_caffe_model = modelPath + "detect.caffemodel";
	string sr_prototxt = modelPath + "sr.prototxt";
	string sr_caffe_model = modelPath + "sr.caffemodel";
	try
	{
		detector = makePtr<wechat_qrcode::WeChatQRCode>(detect_prototxt, detect_caffe_model, sr_prototxt, sr_caffe_model);
	}
	catch (const std::exception& e)
	{
		cout << e.what() << endl;
		return false;
	}

	return true;
}

string AlgoQRCode::detectQRCode(string strPath)
{
	if (detector == NULL) {
		return "-1";
	}

	vector<Mat> vPoints;
	vector<cv::String> vStrDecoded;
	Mat imgInput = imread(strPath, IMREAD_GRAYSCALE);
//	vStrDecoded = detector->detectAndDecode(imgInput, vPoints);
        ....
}

bool AlgoQRCode::compression(string inputFileName, string outputFileName, int quality) {
	Mat srcImage = imread(inputFileName);

	if (srcImage.data != NULL)
	{
		vector<int>compression_params;
		compression_params.push_back(IMWRITE_JPEG_QUALITY);
		compression_params.push_back(quality);     //图像压缩参数,该参数取值范围为0-100,数值越高,图像质量越高

		bool bRet = imwrite(outputFileName, srcImage, compression_params);

		return bRet;
	}

	return false;
}

void AlgoQRCode::release() {
	detector = NULL;
}

5 测试结果

学长这里放到树莓派中,调用外部摄像头进行识别,可以看到,效果还是非常不错的

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/198396.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

linux获得帮助_如何查看命令的用法、作用

Linux获得帮助 多层次的帮助&#xff1a; whatis command --help man and info /usr/share/doc/ Red Hat documentation 、Ubuntu documentation 软件项目网站 其它网站 搜索 whatis 使用数据库来显示命令的简短描述。 [rootlocalhost ~]# whatis rm rm (1) …

基于FPGA的五子棋游戏设计

基于FPGA的五子棋游戏设计 本文基于FPGA设计五子棋游戏&#xff0c;使用按键输入&#xff0c;使用VGA接口输出。五子棋的棋具与围棋相同&#xff0c;棋子分为黑白两色&#xff0c;棋盘为1010&#xff0c;棋子放置于棋盘线交叉点上。两人对局&#xff0c;各执一色&#xff0c;轮…

仿美团外卖源码/在线外卖平台源码PHP/支持多商户+多样化配送费+本土外卖+支持第三方配送

源码简介&#xff1a; 进云仿美团外卖源码&#xff0c;作为外卖平台源码&#xff0c;它不仅支持多商户、多样化配送费、本土外卖&#xff0c;还支持第三方配送。 进云仿美团外卖源码是一个进云源生插件&#xff0c;支持多商户多样化配送费模式本土外卖平台支持第三方配送&…

Unity针对XBOX,SWITCH,PS5手柄的适配踩坑

前言&#xff1a; 记录一点最近在做手柄适配问题的踩坑。 这里推荐一款Unity做手柄适配的插件->Rewired Rewired官方文档链接Rewired Documentation | Supported Controllers Rewired插件里面有个是Player类&#xff0c;这个类获取到当前玩家的输入设备&#xff0c;输入…

蓝桥杯双向排序

这里写自定义目录标题 题目分析代码思路 题目分析 n,m都是 1 0 5 10^5 105 &#xff0c;需要将时间复杂度控制在 n log ⁡ n n \log n nlogn以内。 如果有两次连续的前缀操作&#xff0c;由于它们都是降序排列&#xff0c;等价于只做第二次排列&#xff0c;忽略掉第一次。 同…

Python缺失值处理实现

在数据处理相关工作中&#xff0c;读取的数据中常常会有缺失值的情况&#xff0c;为顺利进行后续的操作&#xff0c;需要首先对缺失值进行处理&#xff0c;处理的方式一般为删除或填充&#xff0c;Python中提供了专门的工具包&#xff0c;可以方便地进行实现。读取操作可以由pa…

2023-简单点-机器学习中矩阵向量求导

机器学习中矩阵向量求导的概念是什么&#xff1f; 在机器学习中&#xff0c;矩阵向量求导的概念主要涉及对函数中的矩阵或向量参数进行求导运算。这种求导运算可以帮助我们了解函数值随参数的变化情况&#xff0c;进而应用于优化算法中。具体来说&#xff0c;当损失函数是一个…

六、Lua运算符

文章目录 一、Lua 运算符&#xff08;一&#xff09;算术运算符&#xff08;二&#xff09;关系运算符&#xff08;三&#xff09;逻辑运算符&#xff08;四&#xff09;其他运算符 二、运算符优先级 一、Lua 运算符 运算符是一个特殊的符号&#xff0c;用于告诉解释器执行特定…

大一学编程怎么学?刚接触编程怎么学习,有没有中文编程开发语言工具?

大一学编程怎么学&#xff1f;刚接触编程怎么学习&#xff0c;有没有中文编程开发语言工具&#xff1f; 1、大一刚开始学编程&#xff0c;面对复杂的代码学习非常吃力&#xff0c;很难入门。建议刚接触编程可以先学习中文编程&#xff0c;了解其中的编程逻辑&#xff0c;学编程…

Ubuntu 环境安装 Kafka、配置运行测试 Kafka 流程笔记

Kafka 介绍 Kafka 是一个由 Apache 软件基金会开发的开源流式处理平台。它被设计用于处理大规模数据流&#xff0c;提供高可靠性、高吞吐量和低延迟的消息传递系统。Kafka 可以用于构建实时数据管道和流式应用程序&#xff0c;让不同应用、系统或者数据源之间能够高效地进行数…

分子骨架跃迁工具-DiffHopp 评测

一、文章背景介绍 DiffHopp模型发表在ICML 2023 Workshop on Computational Biology&#xff08;简称&#xff1a;2023 ICML-WCB&#xff09;上的文章。第一作者是剑桥计算机系的Jos Torge。 DiffHopp是一个专门针对骨架跃迁任务而训练的E3等变条件扩散模型。此外&#xff0c;…

Vue2或者uniapp 中 使用 iframe 嵌入本地 HTML 页面 并 相互通信。

1.使用 iframe 嵌入本地 HTML 页面&#xff08;以pdfjs为例&#xff09; 在 public 文件夹下新建 static 文件夹&#xff0c;然后将 html 文件及相关引用拷贝到 static 文件夹下 uniapp在src下新建hybrid文件 vue 文件完整代码 <template><div class"wrap&q…

第三方发起备份的ORA-00245问题

文章目录 前言一、信息确认共享目录位置控制文件快照位置节点1节点2 二、RAC修改snapshot controlfile 参数三、字典表确认以及测试 前言 在使用 AnyBackup 管理控制台发起 Oracle RAC 数据库备份后&#xff0c;在任务历史记录 > 执行输出中显示如下错误信息&#xff1a; c…

ffmpeg之QT开发环境搭建

文章目录 前言ffmpegQT开发环境搭建1、新建 QT 工程2、拷贝所需的 lib 文件和头文件2、拷贝所需的 dll 动态库文件3、修改 QT 项目的主配置文件 &#xff08;.pro 文件&#xff09;4、验证测试5、解决运行时的报错 前言 之前我们进行了 FFmepg 的编译以及在 Visual Studio 中引…

【双指针】四数之和

四数之和 建议做过了解三数之和的思想再做这道题&#xff0c;思路是一样的~ 题目描述 18. 四数之和 - 力扣&#xff08;LeetCode&#xff09; 给你一个由 n 个整数组成的数组 nums &#xff0c;和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [num…

linux下的工具---gdb

一、gdb简介 GDB,是The GNU Project Debugger 的缩写&#xff0c;是 Linux 下功能全面的调试工具。 GDB支持断点、单步执行、打印变量、观察变量、查看寄存器、查看堆栈等调试手段。 程序的发布方式有两种&#xff0c;debug模式和release模式 Linux gcc/g出来的二进制程序&am…

HMM预习中文版

马尔可夫模型 在之前的笔记中&#xff0c;我们讨论了贝叶斯网络&#xff0c;以及它们如何被用于紧凑地表示随机变量之间的关系。现在&#xff0c;我们将介绍一个与之紧密相关的结构&#xff0c;称为马尔可夫模型&#xff0c;对于本课程的目的&#xff0c;可以将其视为类似于链…

windows10 Arcgis pro3.0-3.1

我先安装的arcgis pro3.0&#xff0c;然后下载的3.1。 3.0里面有pro、help、sdk、还有一些补丁包根据个人情况安装。 3.1里面也是这些。 下载 正版试用最新的 ArcGIS Pro 21 天教程&#xff0c;仅需五步&#xff01;-地理信息云 (giscloud.com.cn) 1、安装windowsdesktop-…

不同酿酒风格生产的葡萄酒有什么不同?

霞多丽适合大多数风格的葡萄酒制作&#xff0c;从干燥的静止葡萄酒&#xff0c;到起泡酒&#xff0c;再到甜美的晚收&#xff0c;甚至是植物酿酒。最广泛影响霞多丽葡萄酒最终结果的两个酿酒决定是是否使用乳酸发酵和用于葡萄酒的橡木影响程度。 通过乳酸发酵&#xff08;或MLF…

【运维】hive 高可用详解: Hive MetaStore HA、hive server HA原理详解;hive高可用实现

文章目录 一. hive高可用原理说明1. Hive MetaStore HA2. hive server HA 二. hive高可用实现1. 配置2. beeline链接测试3. zookeeper相关操作 一. hive高可用原理说明 1. Hive MetaStore HA Hive元数据存储在MetaStore中&#xff0c;包括表的定义、分区、表的属性等信息。 hi…