微信小程序+中草药分类+爬虫+keras

目录

  • 1 介绍
  • 2 数据爬虫
  • 3 模型训练和验证
    • 3.1 模型训练
    • 3.2 导入一张图片进行验证
  • 4 后台flask部署
  • 5 微信小程序

1 介绍

本项目使用深度学习模型,训练5种中药材数据集,然后将其集成到微信小程序,通过微信小程序拍照,将图片传输给后端,后端将返回的结果展示到前端页面,项目主要包含以下内容:

  • 数据爬取:使用爬虫爬取百度图片,可以自己定义要爬取的中草药种类、数量等信息。
  • 模型训练使用基于keras训练分类模型,模型可以修改,例如:ResNet50系列,MobileNet系列等,支持在gpu、cpu训练。
  • 后台flask部署:使用flask将模型部署到后台,提供ip地址和端口号
  • 前端微信小程序:制作前端的微信小程序页面,将图片传输给后端,并且将分类结果返回到前端展示

2 数据爬虫

使用requests进行爬虫
示例:

  for i in range(30):
            image_url = result['data'][i]['middleURL']
            image_name = "%d.jpg" % count
            response = requests.get(image_url, headers=headers, stream=True, timeout=10)
            with open(os.path.join(download_path, image_name), 'wb') as f:
                f.write(response.content)
            count += 1

爬取输入参数,可以自己输入爬取哪些中草药,输入到list里面即可,下面展示只爬取两种中草药。

# 设置搜索关键字和爬取图片的数量
name_list = ['枸杞','金银花']
save_path = "data_爬虫"
page_num = 1 #爬取多少页,每页30个
for keyword in name_list:
    get_images(save_path, keyword, page_num)

在这里插入图片描述
在这里插入图片描述

3 模型训练和验证

此处,我们分别使用keras版本进行训练和验证,具体代码和结果展示如下:

3.1 模型训练

导入必要的包

from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import Adam
from keras.applications import MobileNetV2
from keras.layers import GlobalAveragePooling2D, Dense
from keras.models import Sequential
import json
# 定义ImageDataGenerator
datagen = ImageDataGenerator(
    rescale=1./255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,
    validation_split=0.2  # 设置验证集的比例
)
base_model = MobileNetV2(weights='imagenet', include_top=False, input_shape=(224, 224, 3))

model = Sequential([
    base_model,
    GlobalAveragePooling2D(),
    Dense(128, activation='relu'),
    Dense(num_classes, activation='softmax')
])
# 训练模型
model.fit(
    train_generator,
    steps_per_epoch=train_generator.samples // batch_size,
    epochs=10,
    validation_data=validation_generator,
    validation_steps=validation_generator.samples // batch_size)

# 步骤6: 评估模型性能
eval_result = model.evaluate(validation_generator)
print(f"Test accuracy: {eval_result[1]*100:.2f}%")

部分结果截图

36/36 [==============================] - 22s 449ms/step - loss: 0.7144 - accuracy: 0.7664 - val_loss: 0.7706 - val_accuracy: 0.7278
Epoch 2/10
36/36 [==============================] - 13s 352ms/step - loss: 0.1504 - accuracy: 0.9601 - val_loss: 0.5325 - val_accuracy: 0.8278
Epoch 3/10
36/36 [==============================] - 13s 352ms/step - loss: 0.0959 - accuracy: 0.9829 - val_loss: 0.2743 - val_accuracy: 0.9222
Epoch 4/10
36/36 [==============================] - 13s 351ms/step - loss: 0.0896 - accuracy: 0.9758 - val_loss: 0.3960 - val_accuracy: 0.8500
Epoch 5/10
36/36 [==============================] - 13s 354ms/step - loss: 0.0743 - accuracy: 0.9758 - val_loss: 0.2853 - val_accuracy: 0.9111
Epoch 6/10
36/36 [==============================] - 13s 351ms/step - loss: 0.0525 - accuracy: 0.9829 - val_loss: 0.2473 - val_accuracy: 0.9222

3.2 导入一张图片进行验证

导入图片

import cv2
import numpy as np
import json
from keras.models import load_model

def get_img(img_path,img_width, img_height ):
    img = cv2.imread(img_path)
    img = cv2.resize(img, (img_width, img_height))  # 调整图像大小
    img = img.astype("float") / 255.0  # 数据预处理,确保与训练时一致
    img = np.expand_dims(img, axis=0)
    return img
    
img_width = 224
img_height = 224
model = load_model(r'E:\project\1-zhongcaoyao\model-keras.h5')
print(class_indict)
img_file_path = 'data_all/baihe/b (20).jpg'
classify_img = get_img(img_file_path,img_width, img_height)
results = np.squeeze(model.predict(classify_img)).astype(np.float64)  # 获得预测结果(注意:1.降维2.json中的小数类型为float)
predict_class = np.argmax(results)  # 获得预测结果中置信度最大值所对应的下标

例如:我们导入一张百合的图片,下面是输出结果。
在这里插入图片描述

注意,可能会出现如下错误,原因是模型路径包含中文名称,只需要把模型放到全英文路径下就行。

DecodeError: 'utf-8' codec can't decode byte 0xc6 in position 10: invalid continuation byte

4 后台flask部署

app = flask.Flask(__name__)
idx2class = {0:"百合",1:"党参",2:"枸杞",3:"槐花",4:"金银花"}

idx2info ={}
# 导入药效信息
with open("info.txt", "r", encoding="UTF-8") as fin:
    lines = fin.readlines()
    for line in lines:
        idx = int(line.strip().split(":")[0])
        info = line.strip().split(":")[1]
        idx2info[idx] = info
img_bytes = flask.request.form.get('picture') # 获取值
image = base64.b64decode(img_bytes)# 编码转换
image = Image.open(io.BytesIO(image))
classify_img = prepare_image(image,224,224) # 预处理图像
results = np.squeeze(model.predict(classify_img)).astype(np.float64)  # 获得预测结果(注意:1.降维2.json中的小数类型为float)
predicted_idx = np.argmax(results)  # 获得预测结果中置信度最大值所对应的下标
score = results[predicted_idx]
label_name = idx2class[predicted_idx]
label_info = idx2info[predicted_idx]

在这里插入图片描述

5 微信小程序

我们使用一个界面,完成图片的上传,结果展示等
在这里插入图片描述
核心代码,将图片传输到后台,并且将data结果拿回来,再解析里面的各个字段,最后将字段展示出来。

wx.request({
          url: 'http://127.0.0.1:8080/predict', //本地服务器地址
    
          method: 'POST',

          header: {
            'content-type': 'application/x-www-form-urlencoded'
          },
    
          data: {
            "picture": that.data.picture,
          },
          
          success: (res)=>{
            that.setData({
                class_name: res.data['class_name'],
                prob: res.data['prob'],
                info:res.data['info']
            })

以上就是所有的内容,包含了前端后端、模型训练、数据爬取等功能,详细咨询完整代码:https://docs.qq.com/doc/DWEtRempVZ1NSZHdQ

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/198272.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

monorepo多项目管理主流实现方式:1.learn + yarn/npm workspace 2.pnpm

npm域级包 随着npm包越来越多,而且包名也只能是唯一的,如果一个名字被别人占了,那你就不能再使用这个名字;假设我想要开发一个utils包,但是张三已经发布了一个utils包,那我的包名就不能叫utils了&#xff…

数据分享 I 重点城市现状建筑数据,shp格式放送

数据名称: 现状建筑数据 数据格式: Shp 数据时间: 不同城市的数据时间有所不同,详情可搜“吧唧数据” 数据几何类型: 面 数据坐标系: WGS84坐标系 数据来源:网络公开数据 深圳市现状建筑数据示意图 东莞市部分镇街现状建筑数据示意图 武汉市部…

Apache Flink(一):Apache Flink是什么?

🏡 个人主页:IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 🚩 私聊博主:加入大数据技术讨论群聊,获取更多大数据资料。 🔔 博主个人B栈地址:豹哥教你大数据的个人空间-豹…

智能优化算法应用:基于花授粉算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于花授粉算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于花授粉算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.花授粉算法4.实验参数设定5.算法结果6.参考文献7.…

python实现C++简易自动压行

突发奇想,想要将自己的c压行之后交上去。但是苦于手动压行效率太低,在网上搜索压行网站没有找到,突然发现压行不就是检查检查去个换行符吗。于是心血来潮,用python实现了一个简易压行程序。 首先,宏定义等带#的文件不…

中间件安全:JBoss 反序列化命令执行漏洞.(CVE-2017-7504)

中间件安全:JBoss 反序列化命令执行漏洞.(CVE-2017-7504) JBoss 反序列化漏洞,该漏洞位于 JBoss 的 HttpInvoker 组件中的 ReadOnlyAccessFilter 过滤器中,其 doFilter 方法在没有进行任何安全检查和限制的情况下尝试…

【LeetCode】每日一题 2023_11_28 设计前中后队列(数组/链表/双端队列)

文章目录 刷题前唠嗑题目:设计前中后队列题目描述代码与解题思路偷看大佬题解 结语 刷题前唠嗑 LeetCode?启动!!! 这道题的难度,才是我想象中的中等题的难度好吧,昨天那玩意对我来说还是太难了…

【C++初阶】五、类和对象(日期类的完善、流运算符重载函数、const成员、“”取地址运算符重载)

相关代码gitee自取: C语言学习日记: 加油努力 (gitee.com) 接上期: 【C初阶】四、类和对象 (构造函数、析构函数、拷贝构造函数、赋值运算符重载函数)-CSDN博客 一 . 日期类的完善 此次日期类的成员函数,采用声明…

java List集合(ArrayList,LinkedList,Vector)

Hi i,m JinXiang ⭐ 前言 ⭐ 本篇文章主要介绍java List集合的三种实现类ArrayList,LinkedList,Vector以及部分理论知识 🍉欢迎点赞 👍 收藏 ⭐留言评论 📝私信必回哟😁 🍉博主收将持续更新学习…

python 爬虫之 爬取网站信息并保存到文件

文章目录 前期准备探索该网页的HTML码的特点开始编写代码存入文件总的程序文件存储效果 前期准备 随便找个网站进行爬取,这里我选择的是(一个卖书的网站) https://www.bookschina.com/24hour/62700000/ 我的目的是爬取这个网站的这个页面的书籍的名称以…

JAVA基础进阶(六)

一、包装类的作用 在Java中,包装类是一种用于将基本数据类型封装成对象的机制。 byte、short、int、long、float、double、char、boolean都是基本数据类型,不能当做对象使用。而这些基本数据类型都有对应的包装类,可以当做对象进行使用(包装类是引用数据类型)。 这…

用Sublime编写Lua脚本

大家好,我是阿赵。   现在很多手游项目使用lua作为热更新的代码脚本,我一直很喜欢用Sublime来写lua程序。喜欢使用它的原因是它的轻量化,因为我经常要同时打开多个项目,Unity和VisualStudio这些软件都比较占用电脑的性能&#x…

SpringBoot RestTemplate 的使用

一、简介 RestTemplate 在JDK HttpURLConnection、Apache HttpComponents、OkHttp等基础上&#xff0c;封装了更高级别的API&#xff0c;默认依赖JDK HttpURLConnection&#xff0c;连接方式默认长连接。 二、使用 2.1、引入依赖 <dependency><groupId>org.spri…

删除链表的倒数第N个节点,剑指offerII(21),力扣

目录 题目地址&#xff1a; 题目&#xff1a; 相似类型题&#xff1a; 我们直接看本题题解吧&#xff1a; 解题方法&#xff1a; 难度分析&#xff1a; 解题分析&#xff1a; 解题思路&#xff08;双指针&#xff09;&#xff1a; 代码实现&#xff1a; 代码说明&#xff1a; 代…

001-调用函数访问结构体数组成员,并修改其数值

1 代码 /*调用函数访问结构体数组成员&#xff0c;并修改其数值 */ #include <stdio.h> /* for printf */ #include <stdlib.h> /* for exit */struct mytest{char a ;char b ;char c ; };void p_find_test(struct mytest *aaa) {struct mytest *test aaa…

ubuntu改window任务栏

经常在ubuntu和win之间切换&#xff0c;任务栏的布局不统一会让人很别扭&#xff0c;个人很喜欢win任务栏的不折叠图标功能&#xff0c;而ubuntu没有&#xff0c;又很喜欢的ubuntu的多工作空间&#xff0c;效率比副屏还高&#xff0c;还可以自定义切换工作空间的快捷键。鱼和熊…

创新、诚信、共赢:湖北乾一律师事务所领航律师行业新发展

湖北乾一律师事务所: 一、引言 律师行业在现代社会中扮演着举足轻重的角色,为公民、法人和其他组织提供法律服务,维护法律权益,促进法治建设。湖北乾一律师事务所作为业内的佼佼者,凭借其专业素养、丰富经验和卓越声誉,成为了律师行业的典范。 二、湖北乾一律师事务所概况 …

振南技术干货集:znFAT 硬刚日本的 FATFS 历险记(8)

注解目录 1、znFAT 的起源 1.1 源于论坛 &#xff08;那是一个论坛文化兴盛的年代。网友 DIY SDMP3 播放器激起了我的兴趣。&#xff09; 1.2 硬盘 MP3 推了我一把 &#xff08;“坤哥”的硬盘 MP3 播放器&#xff0c;让我深陷 FAT 文件系统不能自拔。&#xff09; 1.3 我…

day66

今日回顾内容 web框架 django 路由控制 视图层 web框架 一、什么是web框架 Web框架&#xff08;Web framework&#xff09;是一种开发框架&#xff0c;用来支持动态网站、网络应用和网络服务的开发。这大多数的web框架提供了一套开发和部署网站的方式&#xff0c;也为web行…

osgFX扩展库-异性光照、贴图、卡通特效(1)

本章将简单介绍 osgFX扩展库及osgSim 扩展库。osgFX库用得比较多,osgSim库不常用&#xff0c;因此&#xff0c;这里只对这个库作简单的说明。 osgFX扩展库 osgFX是一个OpenSceneGraph 的附加库&#xff0c;是一个用于实现一致、完备、可重用的特殊效果的构架工具&#xff0c;其…