Elasticsearch底层原理分析——新建、索引文档

es版本

8.1.0

重要概念回顾

Elasticsearch Node的角色

与下文流程相关的角色介绍:

Node Roles配置主要功能说明
masternode.roles: [ master ]有资格参与选举成为master节点,从而进行集群范围的管理工作,如创建或删除索引、跟踪哪些节点是集群的一部分以及决定将哪些分片分配给哪些节点等
datanode.roles: [ data ]数据节点保存已索引的文档的分片。处理数据相关操作,例如 CRUD、搜索和聚合。
node.roles: [ ]节点不填任何角色,则是协调节点,换言之每个节点,也都有协调节点功能。具备路由请求、对搜索结果合并和分发批量索引等功能。本质上,协调节点的行为就像智能负载均衡器

详见:https://www.elastic.co/guide/en/elasticsearch/reference/8.9/modules-node.html

分片

  • 一个分片是一个 Lucene 的实例,是一个完整的搜索引擎
  • 主分片的数量决定了索引最多能存储多少数据,多分片机制,带来存储量级提升
  • 主分片数不可更改,和数据路由算法有关
  • 副本分片可以防止硬件故障导致的数据丢失,同时可以提供读请求,增大能处理的搜索吞吐量
  • 对文档的新建、索引和删除请求都是写操作,必须在主分片上面完成,之后才能被复制到相关的副本分片

https://www.elastic.co/guide/cn/elasticsearch/guide/current/_add-an-index.html

新建、索引和删除文档

以官网(https://www.elastic.co/guide/cn/elasticsearch/guide/current/distrib-write.html)例子分析,es集群有3个节点,其中有个索引有两分片(P0、P1),两副本(P0、R0、R0,P1、R1、R1),如创建索引时:

PUT /blogs
{
   "settings" : {
      "number_of_shards" : 2,
      "number_of_replicas" : 2
   }
}

在这里插入图片描述

再对一些前提知识回顾一下:

  • 每个节点都具备协调节点功能,也即路由请求、对搜索结果合并和分发批量索引等功能
  • 对文档的新建、索引和删除请求等写操作,必须在主分片上面完成,之后才能被复制到相关的副本分片

这个例子中的两个假设:

  • 请求集群时,es采用的是随机轮询方法进行负载均衡,每个节点都有可能被请求到。在这个例子中,假设先请求到node1
  • 节点使用文档的 _id 确定文档属于分片 0

所以(直接引用官网步骤):

  • 客户端向 Node 1 发送新建、索引或者删除请求。
  • 节点使用文档的 _id 确定文档属于分片 0 。请求会被转发到 Node 3,因为分片 0 的主分片目前被分配在 Node 3 上。
  • Node 3 在主分片上面执行请求。如果成功了,它将请求并行转发到 Node 1 和 Node 2 的副本分片上。一旦所有的副本分片都报告成功, Node 3 将向协调节点报告成功,协调节点向客户端报告成功。

源码理解

如何确定文档属于哪个分片,请求转发哪个节点

获取分片ID是从TransportBulkAction类中开始调用开始

int shardId = docWriteRequest.route(indexRouting);

具体实现在IndexRouting类中。简述步骤就是:

  1. 对routing值进行Murmur3Hash运算(如果没有设置routing,值默认是doc id值)
  2. 对hash后的值进行取模运算,routingNumShards默认1024,routingFactor默认512
protected int shardId(String id, @Nullable String routing) {
    return hashToShardId(effectiveRoutingToHash(routing == null ? id : routing));
}

protected final int hashToShardId(int hash) {
   return Math.floorMod(hash, routingNumShards) / routingFactor;
}

private static int effectiveRoutingToHash(String effectiveRouting) {
    return Murmur3HashFunction.hash(effectiveRouting);
}
为何需要路由,以及路由带来什么问题
  1. 为何需要路由
    总的来说,就是多分片设计,可以承载更大量级数据,而分片预分配设计,可以简单的获取文档位置,能减少数据分裂风险,以及对数据重新索引友好
    https://www.elastic.co/guide/cn/elasticsearch/guide/current/overallocation.html
  2. 带来的问题:

创建索引的时候就需要确定好主分片的数量,并且永远不会改变这个数量。因为如果数量变化了,那么所有之前路由的值都会无效,文档也再也找不到了。
https://www.elastic.co/guide/cn/elasticsearch/guide/current/routing-value.html

如何根据分片ID确定节点

代码在TransportReplicationAction#doRun方法中,简单概括就是state中存有集群信息,通过传入分片ID,先获取主分片信息,再通过主分片节点ID,获取对应节点信息。

final ShardRouting primary = state.getRoutingTable().shardRoutingTable(request.shardId()).primaryShard();
if (primary == null || primary.active() == false) {
    logger.trace(
        "primary shard [{}] is not yet active, scheduling a retry: action [{}], request [{}], "
            + "cluster state version [{}]",
        request.shardId(),
        actionName,
        request,
        state.version()
    );
    retryBecauseUnavailable(request.shardId(), "primary shard is not active");
    return;
}
if (state.nodes().nodeExists(primary.currentNodeId()) == false) {
    logger.trace(
        "primary shard [{}] is assigned to an unknown node [{}], scheduling a retry: action [{}], request [{}], "
            + "cluster state version [{}]",
        request.shardId(),
        primary.currentNodeId(),
        actionName,
        request,
        state.version()
    );
    retryBecauseUnavailable(request.shardId(), "primary shard isn't assigned to a known node.");
    return;
}
final DiscoveryNode node = state.nodes().get(primary.currentNodeId());
if (primary.currentNodeId().equals(state.nodes().getLocalNodeId())) {
    performLocalAction(state, primary, node, indexMetadata);
} else {
    performRemoteAction(state, primary, node);
}
主分片执行流程
1. 写一致性

默认写成功一个主分片即可,源码在ActiveShardCount#enoughShardsActive方法中

https://www.elastic.co/guide/en/elasticsearch/client/curator/current/option_wait_for_active_shards.html

    public boolean enoughShardsActive(final IndexShardRoutingTable shardRoutingTable) {
        final int activeShardCount = shardRoutingTable.activeShards().size();
        if (this == ActiveShardCount.ALL) {
            // adding 1 for the primary in addition to the total number of replicas,
            // which gives us the total number of shard copies
            return activeShardCount == shardRoutingTable.replicaShards().size() + 1;
        } else if (this == ActiveShardCount.DEFAULT) {
            return activeShardCount >= 1;
        } else {
            return activeShardCount >= value;
        }
    }
2. 具体写流程

参考官网(https://www.elastic.co/guide/cn/elasticsearch/guide/current/translog.html)理解。图片所示是一个lucene索引,lucene索引下面有三个段(segment),图中Searchable表示从内存(In-memory buffer,也叫Indexing Buffer)刷新到磁盘,写入物理文件,不可更改,其中fsync操作将新文档刷新到磁盘的操作,性能代价是很大的。所以会先将文档写入文件系统缓存中,也即图中In-memory buffer中,对应的是 Indexing Buffer(https://www.elastic.co/guide/en/elasticsearch/reference/8.10/indexing-buffer.html)。
所以流程是:

  • 将文档写入Indexing Buffer中
  • 将操作追加写入 translog 中,以便确保即便在刷盘时异常,也能从失败中恢复数据
  • 将内存中的数据刷新持久化到磁盘中(默认情况下每个分片会每秒自动刷新一次)
  • 在刷新(flush)之后,段被全量提交,并且事务日志被清空

在这里插入图片描述

在这里插入图片描述

相关源码

主要在InternalEngine类中:

  • index方法包含写入In-memory buffer对应生成IndexResult(?)和写translog;
  • 将内存中的数据刷新持久化到磁盘中在refresh方法;
  • 段被全量提交,和事务日志被清空在flush方法。
index方法
    public IndexResult index(Index index) throws IOException {
        // 确保传入的文档的唯一标识是 IdFieldMapper
        assert Objects.equals(index.uid().field(), IdFieldMapper.NAME) : index.uid().field();
        // 检查 index 的来源是否不是恢复操作
        final boolean doThrottle = index.origin().isRecovery() == false;
        // 获取读锁
        try (ReleasableLock releasableLock = readLock.acquire()) {
            // 确保引擎处于打开状态
            ensureOpen();
            // 断言传入的 index 的序列号符合预期
            assert assertIncomingSequenceNumber(index.origin(), index.seqNo());
            int reservedDocs = 0;
            try (
                Releasable ignored = versionMap.acquireLock(index.uid().bytes());
                Releasable indexThrottle = doThrottle ? throttle.acquireThrottle() : () -> {}
            ) {
                lastWriteNanos = index.startTime();
                // 代码中有一段注释,描述了关于追加(append-only)优化的注意事项。根据注释所述,如果引擎接收到一个带有自动生成的ID的文档,
                // 可以优化处理并直接使用 addDocument 而不是 updateDocument,从而跳过版本和索引查找。此外,还使用文档的时间戳来检测是否可能已经添加过该文档。
                // 获取索引策略
                final IndexingStrategy plan = indexingStrategyForOperation(index);
                reservedDocs = plan.reservedDocs;

                final IndexResult indexResult;
                if (plan.earlyResultOnPreFlightError.isPresent()) {
                    assert index.origin() == Operation.Origin.PRIMARY : index.origin();
                    indexResult = plan.earlyResultOnPreFlightError.get();
                    assert indexResult.getResultType() == Result.Type.FAILURE : indexResult.getResultType();
                } else {
                    // generate or register sequence number
                    // 生成或注册文档的序列号。对于主分片的操作,会生成新的序列号。
                    if (index.origin() == Operation.Origin.PRIMARY) {
                        index = new Index(
                            index.uid(),
                            index.parsedDoc(),
                            // 生成新的序列号
                            generateSeqNoForOperationOnPrimary(index),
                            index.primaryTerm(),
                            index.version(),
                            index.versionType(),
                            index.origin(),
                            index.startTime(),
                            index.getAutoGeneratedIdTimestamp(),
                            index.isRetry(),
                            index.getIfSeqNo(),
                            index.getIfPrimaryTerm()
                        );

                        // 检查了当前操作是否应该追加到 Lucene 索引中
                        final boolean toAppend = plan.indexIntoLucene && plan.useLuceneUpdateDocument == false;
                        if (toAppend == false) {
                            // 更新主分片的最大序列号
                            advanceMaxSeqNoOfUpdatesOnPrimary(index.seqNo());
                        }
                    } else {
                        // 对于副本分片的操作,会标记已经见过的序列号,序列号已经被使用。
                        markSeqNoAsSeen(index.seqNo());
                    }

                    assert index.seqNo() >= 0 : "ops should have an assigned seq no.; origin: " + index.origin();

                    if (plan.indexIntoLucene || plan.addStaleOpToLucene) {
                        // 写到 Lucene 中
                        indexResult = indexIntoLucene(index, plan);
                    } else {
                        indexResult = new IndexResult(
                            plan.versionForIndexing,
                            index.primaryTerm(),
                            index.seqNo(),
                            plan.currentNotFoundOrDeleted
                        );
                    }
                }
                // 判断索引操作是否来自 Translog。如果是来自 Translog 的操作,就不再处理,因为这已经是一个已经被记录的操作
                if (index.origin().isFromTranslog() == false) {
                    final Translog.Location location;
                    if (indexResult.getResultType() == Result.Type.SUCCESS) {
                        // 如果索引操作成功, 将该操作添加到 Translog 中,并获取 Translog 的位置
                        location = translog.add(new Translog.Index(index, indexResult));
                    } else if (indexResult.getSeqNo() != SequenceNumbers.UNASSIGNED_SEQ_NO) {
                        // if we have document failure, record it as a no-op in the translog and Lucene with the generated seq_no
                        // 如果索引操作失败,并且具有序列号, 则将失败的操作记录为一个 no-op 操作
                        final NoOp noOp = new NoOp(
                            indexResult.getSeqNo(),
                            index.primaryTerm(),
                            index.origin(),
                            index.startTime(),
                            indexResult.getFailure().toString()
                        );
                        location = innerNoOp(noOp).getTranslogLocation();
                    } else {
                        // 如果索引操作失败,并且没有序列号,将 location 设置为 null
                        location = null;
                    }
                    // 设置Translog 位置
                    indexResult.setTranslogLocation(location);
                }
                // 如果索引操作成功且需要写入 Lucene, 则获取 Translog 的位置信息,用于更新版本映射
                if (plan.indexIntoLucene && indexResult.getResultType() == Result.Type.SUCCESS) {
                    final Translog.Location translogLocation = trackTranslogLocation.get() ? indexResult.getTranslogLocation() : null;
                    versionMap.maybePutIndexUnderLock(
                        index.uid().bytes(),
                        new IndexVersionValue(translogLocation, plan.versionForIndexing, index.seqNo(), index.primaryTerm())
                    );
                }
                // 本地 Checkpoint 的更新, 标记当前序列号已经被处理
                localCheckpointTracker.markSeqNoAsProcessed(indexResult.getSeqNo());
                if (indexResult.getTranslogLocation() == null) {
                    // the op is coming from the translog (and is hence persisted already) or it does not have a sequence number
                    // 如果 Translog 的位置信息为 null,说明该操作来自于 Translog,已经被持久化,或者该操作没有序列号。
                    // 在这种情况下,标记当前序列号已经被持久化
                    assert index.origin().isFromTranslog() || indexResult.getSeqNo() == SequenceNumbers.UNASSIGNED_SEQ_NO;
                    localCheckpointTracker.markSeqNoAsPersisted(indexResult.getSeqNo());
                }
                indexResult.setTook(System.nanoTime() - index.startTime());
                // 将操作结果冻结,确保其不可变
                indexResult.freeze();
                return indexResult;
            } finally {
                releaseInFlightDocs(reservedDocs);
            }
        } catch (RuntimeException | IOException e) {
            try {
                if (e instanceof AlreadyClosedException == false && treatDocumentFailureAsTragicError(index)) {
                    failEngine("index id[" + index.id() + "] origin[" + index.origin() + "] seq#[" + index.seqNo() + "]", e);
                } else {
                    maybeFailEngine("index id[" + index.id() + "] origin[" + index.origin() + "] seq#[" + index.seqNo() + "]", e);
                }
            } catch (Exception inner) {
                e.addSuppressed(inner);
            }
            throw e;
        }
    }
自动sync条件translog条件:

相关配置:

  • index.translog.sync_interval: 默认5s
  • index.translog.durability:默认配置的是request,即每次写请求完成之后执行(e.g. index, delete, update, bulk)
  • index.translog.flush_threshold_size:默认512mb

https://www.elastic.co/guide/cn/elasticsearch/guide/current/translog.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.11/index-modules-translog.html

private void maybeSyncTranslog(final IndexShard indexShard) throws IOException {
    if (indexShard.getTranslogDurability() == Translog.Durability.REQUEST
        && indexShard.getLastSyncedGlobalCheckpoint() < indexShard.getLastKnownGlobalCheckpoint()) {
        indexShard.sync();
    }
}
refresh源码:
    final boolean refresh(String source, SearcherScope scope, boolean block) throws EngineException {
        // both refresh types will result in an internal refresh but only the external will also
        // pass the new reader reference to the external reader manager.
        // 获取当前的本地检查点
        final long localCheckpointBeforeRefresh = localCheckpointTracker.getProcessedCheckpoint();
        boolean refreshed;
        try {
            // refresh does not need to hold readLock as ReferenceManager can handle correctly if the engine is closed in mid-way.
            // 尝试增加存储的引用计数,以确保在刷新期间没有人关闭存储
            if (store.tryIncRef()) {
                // increment the ref just to ensure nobody closes the store during a refresh
                try {
                    // even though we maintain 2 managers we really do the heavy-lifting only once.
                    // the second refresh will only do the extra work we have to do for warming caches etc.
                    ReferenceManager<ElasticsearchDirectoryReader> referenceManager = getReferenceManager(scope);
                    // it is intentional that we never refresh both internal / external together
                    if (block) {
                        referenceManager.maybeRefreshBlocking();
                        refreshed = true;
                    } else {
                        refreshed = referenceManager.maybeRefresh();
                    }
                } finally {
                    // 减少存储的引用计数
                    store.decRef();
                }
                if (refreshed) {
                    lastRefreshedCheckpointListener.updateRefreshedCheckpoint(localCheckpointBeforeRefresh);
                }
            } else {
                refreshed = false;
            }
        } catch (AlreadyClosedException e) {
            failOnTragicEvent(e);
            throw e;
        } catch (Exception e) {
            try {
                failEngine("refresh failed source[" + source + "]", e);
            } catch (Exception inner) {
                e.addSuppressed(inner);
            }
            throw new RefreshFailedEngineException(shardId, e);
        }
        assert refreshed == false || lastRefreshedCheckpoint() >= localCheckpointBeforeRefresh
            : "refresh checkpoint was not advanced; "
                + "local_checkpoint="
                + localCheckpointBeforeRefresh
                + " refresh_checkpoint="
                + lastRefreshedCheckpoint();
        // TODO: maybe we should just put a scheduled job in threadPool?
        // We check for pruning in each delete request, but we also prune here e.g. in case a delete burst comes in and then no more deletes
        // for a long time:
        maybePruneDeletes();
        mergeScheduler.refreshConfig();
        return refreshed;
    }
flush源码:

执行条件主要在这段注释里面:

// Only flush if (1) Lucene has uncommitted docs, or (2) forced by caller, or (3) the
// newly created commit points to a different translog generation (can free translog),
// or (4) the local checkpoint information in the last commit is stale, which slows down future recoveries.
    @Override
    public void flush(boolean force, boolean waitIfOngoing) throws EngineException {
        // 确保引擎是打开的
        ensureOpen();
        if (force && waitIfOngoing == false) {
            // 如果强制执行 flush 但不等待正在进行的 flush 操作,抛出异常
            assert false : "wait_if_ongoing must be true for a force flush: force=" + force + " wait_if_ongoing=" + waitIfOngoing;
            throw new IllegalArgumentException(
                "wait_if_ongoing must be true for a force flush: force=" + force + " wait_if_ongoing=" + waitIfOngoing
            );
        }
        // 获取读锁
        try (ReleasableLock lock = readLock.acquire()) {
            ensureOpen();
            if (flushLock.tryLock() == false) {
                // if we can't get the lock right away we block if needed otherwise barf
                if (waitIfOngoing == false) {
                    return;
                }
                logger.trace("waiting for in-flight flush to finish");
                flushLock.lock();
                logger.trace("acquired flush lock after blocking");
            } else {
                logger.trace("acquired flush lock immediately");
            }
            try {
                /**
                 * 1. Lucene 有未提交的文档: 如果 Lucene 索引中存在未提交的文档,即有尚未写入磁盘的更改。
                 * 2. 被调用者强制执行: 如果调用者明确要求执行 flush 操作,即 force 参数为 true。
                 * 3. 新创建的提交指向不同的 translog 生成: 当新创建的提交(commit)指向不同的 translog 生成时,执行 flush 操作。
                 * 这可能是因为 translog 已经占用了一定的空间,需要释放这些旧的 translog。
                 * 4. 上一次提交的本地检查点信息已过期: 如果上一次提交的段信息中的本地检查点信息已过期,这可能会导致未来的恢复操作变慢。
                 * 因此,需要执行 flush 操作来更新本地检查点信息。
                 */
                // 检查 Lucene 是否有未提交的更改。
                boolean hasUncommittedChanges = indexWriter.hasUncommittedChanges();
                // 检查是否应定期执行 flush 操作
                boolean shouldPeriodicallyFlush = shouldPeriodicallyFlush();
                if (hasUncommittedChanges
                    || force
                    || shouldPeriodicallyFlush
                    // 检查是否本地检查点信息在上一次提交的段信息中过期,如果是,则触发 flush
                    || getProcessedLocalCheckpoint() > Long.parseLong(
                        lastCommittedSegmentInfos.userData.get(SequenceNumbers.LOCAL_CHECKPOINT_KEY)
                    )) {
                    ensureCanFlush();
                    try {
                        // 滚动 translog 的生成
                        translog.rollGeneration();
                        logger.trace("starting commit for flush; commitTranslog=true");
                        // 提交索引写入器,包括在 Lucene 中提交未提交的文档,并将 translog 提交到持久存储。
                        commitIndexWriter(indexWriter, translog);
                        logger.trace("finished commit for flush");

                        // a temporary debugging to investigate test failure - issue#32827. Remove when the issue is resolved
                        logger.debug(
                            "new commit on flush, hasUncommittedChanges:{}, force:{}, shouldPeriodicallyFlush:{}",
                            hasUncommittedChanges,
                            force,
                            shouldPeriodicallyFlush
                        );

                        // we need to refresh in order to clear older version values
                        // 强制刷新索引以清除旧的版本信息。
                        refresh("version_table_flush", SearcherScope.INTERNAL, true);
                        translog.trimUnreferencedReaders();
                    } catch (AlreadyClosedException e) {
                        failOnTragicEvent(e);
                        throw e;
                    } catch (Exception e) {
                        throw new FlushFailedEngineException(shardId, e);
                    }
                    // 刷新最后提交的段信息
                    refreshLastCommittedSegmentInfos();

                }
            } catch (FlushFailedEngineException ex) {
                maybeFailEngine("flush", ex);
                throw ex;
            } finally {
                flushLock.unlock();
            }
        }
        // We don't have to do this here; we do it defensively to make sure that even if wall clock time is misbehaving
        // (e.g., moves backwards) we will at least still sometimes prune deleted tombstones:
        if (engineConfig.isEnableGcDeletes()) {
            pruneDeletedTombstones();
        }
    }
    protected void commitIndexWriter(final IndexWriter writer, final Translog translog) throws IOException {
        // 确保引擎的状态是允许刷新的
        ensureCanFlush();
        try {
            // 获取已处理的本地检查点
            final long localCheckpoint = localCheckpointTracker.getProcessedCheckpoint();
            writer.setLiveCommitData(() -> {
                
                final Map<String, String> commitData = new HashMap<>(8);
                // 添加 translog 的 UUID 到提交数据中
                commitData.put(Translog.TRANSLOG_UUID_KEY, translog.getTranslogUUID());
                // 添加本地检查点到提交数据中
                commitData.put(SequenceNumbers.LOCAL_CHECKPOINT_KEY, Long.toString(localCheckpoint));
                // 添加最大序列号到提交数据中
                commitData.put(SequenceNumbers.MAX_SEQ_NO, Long.toString(localCheckpointTracker.getMaxSeqNo()));
                // 添加最大不安全自动生成的 ID 时间戳到提交数据中
                commitData.put(MAX_UNSAFE_AUTO_ID_TIMESTAMP_COMMIT_ID, Long.toString(maxUnsafeAutoIdTimestamp.get()));
                // 添加历史 UUID 到提交数据中
                commitData.put(HISTORY_UUID_KEY, historyUUID);
                final String currentForceMergeUUID = forceMergeUUID;
                if (currentForceMergeUUID != null) {
                    //  如果强制合并 UUID 存在,则添加到提交数据中
                    commitData.put(FORCE_MERGE_UUID_KEY, currentForceMergeUUID);
                }
                // 添加最小保留序列号到提交数据中
                commitData.put(Engine.MIN_RETAINED_SEQNO, Long.toString(softDeletesPolicy.getMinRetainedSeqNo()));
                commitData.put(ES_VERSION, Version.CURRENT.toString());
                logger.trace("committing writer with commit data [{}]", commitData);
                return commitData.entrySet().iterator();
            });
            shouldPeriodicallyFlushAfterBigMerge.set(false);
            // 调用Lucene 会将所有未提交的文档写入磁盘,生成新的段
            writer.commit();
        } catch (final Exception ex) {
            try {
                failEngine("lucene commit failed", ex);
            } catch (final Exception inner) {
                ex.addSuppressed(inner);
            }
            throw ex;
        } catch (final AssertionError e) {
            /*
             * If assertions are enabled, IndexWriter throws AssertionError on commit if any files don't exist, but tests that randomly
             * throw FileNotFoundException or NoSuchFileException can also hit this.
             */
            if (ExceptionsHelper.stackTrace(e).contains("org.apache.lucene.index.IndexWriter.filesExist")) {
                final EngineException engineException = new EngineException(shardId, "failed to commit engine", e);
                try {
                    failEngine("lucene commit failed", engineException);
                } catch (final Exception inner) {
                    engineException.addSuppressed(inner);
                }
                throw engineException;
            } else {
                throw e;
            }
        }
    }
写副本

副本在写入数据到 translog 后就可以返回了。源码主要在ReplicationOperation类中

@Override
public void tryAction(ActionListener<ReplicaResponse> listener) {
    replicasProxy.performOn(shard, replicaRequest, primaryTerm, globalCheckpoint, maxSeqNoOfUpdatesOrDeletes, listener);
}

处理结束给协调节点返回消息

 @Override
 public void onResponse(Void aVoid) {
     successfulShards.incrementAndGet();
     try {
         updateCheckPoints(primary.routingEntry(), primary::localCheckpoint, primary::globalCheckpoint);
     } finally {
         decPendingAndFinishIfNeeded();
     }
 }

参考:
https://www.elastic.co/guide/cn/elasticsearch/guide/current/translog.html
https://www.golangblogs.com/read/elasticsearch/date-2023.05.24.16.58.36?wd=Elasticsearch
《Elasticsearch源码解析与优化实战》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/197418.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机毕业设计php+bootstrap小区物业管理系统

意义&#xff1a;随着我国经济的发展和人们生活水平的提高&#xff0c;住宅小区已经成为人们居住的主流&#xff0c;人们生活质量提高的同时&#xff0c;对小区物业管理的要求也越来越高&#xff0c;诸如对小区的维修维护&#xff0c;甚至对各项投诉都要求小区管理者做得好&…

Django请求生命周期流程

浏览器发起请求。 先经过网关接口&#xff0c;Django自带的是wsgiref&#xff0c;请求来的时候解析封装&#xff0c;响应走的时候打包处理&#xff0c;这个wsgiref模块本身能够支持的并发量很少&#xff0c;最多1000左右&#xff0c;上线之后会换成uwsgi&#xff0c;并且还会加…

Linux 项目自动化构建工具:make/makefile

什么是 make make 是一个命令&#xff0c;他会在源文件的当前目录下寻找 makefile 或者 Makefile 文件执行这个文件中的代码。 makefile 文件的编写 我们先来见见猪跑&#xff0c;看看 make 怎么用的&#xff1a; 下面是 makefile 文件的内容&#xff1a; 这是 test.c 中的…

Vue19 列表过滤

直接上代码 以下代码使用了两种实现方式&#xff0c;监视属性和计算属性 当能用计算属性实现时&#xff0c;推荐使用计算属性 <!DOCTYPE html> <html><head><meta charset"UTF-8" /><title>列表过滤</title><script type&q…

python项目报错

解决办法&#xff1a;不要用配置的镜像脚本&#xff0c;直接用此命令 pip install pandas -i http://mirrors.aliyun.com/pypi/simple --trusted-host mirrors.aliyun.com

C++类与对象(7)—友元、内部类、匿名对象、拷贝对象时编译器优化

目录 一、友元 1、定义 2、友元函数 3、友元类 二、内部类 1、定义 2、特性&#xff1a; 三、匿名对象 四、拷贝对象时的一些编译器优化 1、传值&传引用返回优化对比 2、匿名对象作为函数返回对象 3、接收返回值方式对比 总结&#xff1a; 一、友元 1、定义…

Javaweb之Vue组件库Element之Form表单的详细解析

4.3.4 Form表单 4.3.4.1 组件演示 Form 表单&#xff1a;由输入框、选择器、单选框、多选框等控件组成&#xff0c;用以收集、校验、提交数据。 表单在我们前端的开发中使用的还是比较多的&#xff0c;接下来我们学习这个组件&#xff0c;与之前的流程一样&#xff0c;我们首…

深入了解MD5加密技术及其应用与局限

一、MD5简介 MD5&#xff08;Message Digest Algorithm 5&#xff09;是一种单向散列函数&#xff0c;由美国密码学家罗纳德李维斯特&#xff08;Ronald Linn Rivest&#xff09;于1991年发明。它主要用于将任意长度的消息映射成固定长度的摘要&#xff0c;从而实现消息的完整…

20分钟拥有自己的ChatGPT4,高效低成本,小白必看

准备工作 1、准备一个3.5的账号 2、一张虚拟卡 开始步骤 从ChatGPT第一版发布到现在&#xff0c;还不到一年的时间中&#xff0c;可是它使用的GPT架构已经从3.5版本进化到现在的4.0版本&#xff0c;随之而来的是其能力的极大提升。下面是GPT-4在其官网的介绍中的一句话&…

java基础进阶-线程池

1、线程池 线程池就是一个可以复用线程的技术。 2、应用场景 用户每发起一个请求&#xff0c;后台就需要创建一个新线程来处理&#xff0c;下次新任务来了肯定又要创建新线程处理的&#xff0c;而创建新线程的开销是很大的&#xff0c;并且请求过多时&#xff0c;肯定会产生大…

Python数据预处理详解

更多资料获取 &#x1f4da; 个人网站&#xff1a;ipengtao.com 数据预处理是数据科学中至关重要的步骤&#xff0c;它包括清洗、转换、归一化等操作&#xff0c;以使数据适合于机器学习模型的使用。Python提供了多种强大的库和工具&#xff0c;能够帮助进行数据预处理。本文将…

C语言枚举的作用是什么?

我在知乎上看到这个问题&#xff0c;一开始&#xff0c;也有一些疑惑&#xff0c;后面查了一些资料&#xff0c;对于这个问题&#xff0c;简单的说一下我的看法。 枚举有多大 枚举类型到底有多大&#xff0c;占多少空间呢&#xff1f;这个要具体情况具体分析&#xff0c;编译器…

第八节HarmonyOS @Component自定义组件的生命周期

在开始之前&#xff0c;我们先明确自定义组件和页面的关系&#xff1a; 1、自定义组件&#xff1a;Component装饰的UI单元&#xff0c;可以组合多个系统组件实现UI的复用。 2、页面&#xff1a;即应用的UI页面。可以由一个或者多个自定义组件组成&#xff0c;Entry装饰的自定…

LeetCode Hot100 108.将有序数组转为二叉搜索树

题目&#xff1a; 给你一个整数数组 nums &#xff0c;其中元素已经按 升序 排列&#xff0c;请你将其转换为一棵 高度平衡 二叉搜索树。 高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。 方法&#xff1a; class Solution {public…

深信服防火墙设置应用控制策略(菜鸟必看)

PS&#xff1a;前几天发布了关于深信服防火墙路由部署的流程&#xff1a;深信服防火墙路由模式开局部署-手把手教学&#xff08;小白篇&#xff09;-CSDN博客 昨天晚上有csdn的朋友联系我&#xff0c;说有一个关于ACL访问的问题要帮忙看一下 解决了以后&#xff0c;写个大概的…

Week-T11-优化器对比试验

文章目录 一、准备环境二、准备数据三、搭建训练网络三、训练模型&#xff08;1&#xff09;VSCode训练情况&#xff1a;&#xff08;2&#xff09;jupyter notebook训练情况&#xff1a; 四、模型评估 & 模型预测1、绘制Accuracy-Loss图2、显示model2的预测效果 五、总结1…

C++ 泛型编程,函数模版和类模版

1.泛型编程 泛型编程&#xff1a;编写与类型无关的通用代码&#xff0c;是代码复用的一种手段。模板是泛型编程的基础 就比如说活字印刷术&#xff0c;就是提供一个模具&#xff0c;然后根据模具来印刷出不同的字。 泛型编程跟着类似&#xff0c;提供一个模版&#xff0c;根据这…

五、Microsoft群集服务(MSCS)环境的搭建

一、【目的】 学会利用Windows Server布置群集环境。 二、【设备】 FreeNAS11.2&#xff0c;Windows Server 2019 三、【要求】 学会利用Windows Server布置群集环境&#xff0c;掌握处理问题的能力。 配置表&#xff1a; 节点公网IP(public)内网IP(private)群集IP(clust…

欧拉LINUX 23.09版本上安装ORACLE 19c

前面解决了在RHEL9上安装ORACLE 19C的问题后&#xff0c;发现龙蜥 LINUX23 上可以安装ORACLE19C,网上搜了一下&#xff0c;欧拉 linux 22.03 上&#xff0c;没有成功安装ORACLE 19c 的先例&#xff0c;23.09就更不用说了&#xff0c;但看到的错误&#xff0c;不外服都是缺 libp…

玻色量子真机测试完整报告

​ 真机测试 2023年 2023.8 量子计算突破云渲染资源调度&#xff01;真机测试完整报告公开&#xff01; 2023.8 量子计算突破金融信用评分&#xff01;真机测试完整报告公开&#xff01; 组合优化问题专题 2023年 2023.7 玻色量子“揭秘”之旅行商问题与Ising建模 2023.…