Python数据预处理详解

更多资料获取

📚 个人网站:ipengtao.com


数据预处理是数据科学中至关重要的步骤,它包括清洗、转换、归一化等操作,以使数据适合于机器学习模型的使用。Python提供了多种强大的库和工具,能够帮助进行数据预处理。本文将介绍数据预处理的各种方法,包括缺失值处理、特征缩放、编码以及特征选择,并提供详细的示例代码。

1. 缺失值处理

处理数据中的缺失值是数据预处理的重要一环。缺失值会影响模型的准确性,因此需要采取适当的方法处理。

示例:使用 Pandas 处理缺失值

Pandas是处理数据的流行库,提供了处理缺失值的丰富功能。

import pandas as pd

# 创建包含缺失值的示例数据
data = {'A': [1, 2, None, 4], 'B': [5, None, 7, 8]}
df = pd.DataFrame(data)

# 检查缺失值
print(df.isnull())

# 删除含有缺失值的行
df.dropna(inplace=True)

# 用平均值填充缺失值
df.fillna(df.mean(), inplace=True)

在这个示例中,首先创建一个包含缺失值的数据框,并使用isnull()函数检查缺失值。接着,使用dropna()删除缺失值所在的行,并用fillna()函数填充缺失值。

2. 特征缩放

特征缩放是将数据特征转换到相似范围的过程,以确保模型不会被某个特征的数值范围所主导。

示例:使用 Scikit-Learn 进行特征缩放

Scikit-Learn提供了许多特征缩放的方法,如MinMaxScaler和StandardScaler。

from sklearn.preprocessing import MinMaxScaler, StandardScaler
import numpy as np

# 创建示例数据
data = np.array([[1.0, 10.0], [2.0, 20.0], [3.0, 30.0]])

# MinMaxScaler 特征缩放
scaler = MinMaxScaler()
scaled_data = scaler.fit_transform(data)
print("MinMaxScaled Data:")
print(scaled_data)

# StandardScaler 特征缩放
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data)
print("\nStandardScaled Data:")
print(scaled_data)

在这个示例中,首先创建一个包含示例数据的数组,然后使用MinMaxScaler和StandardScaler进行特征缩放。

3. 数据编码

对非数值类型的数据进行编码是数据预处理中的重要步骤,它将分类数据转换为模型可以处理的数值类型数据。

示例:使用 Pandas 进行独热编码

独热编码是将分类数据转换为二进制向量的方法,Pandas提供了方便的方法进行独热编码。

data = {'color': ['Red', 'Green', 'Blue', 'Green']}
df = pd.DataFrame(data)

# 使用 Pandas 进行独热编码
encoded_data = pd.get_dummies(df, columns=['color'])
print(encoded_data)

在这个示例中,创建了一个包含分类数据的数据框,并使用get_dummies()函数对其进行独热编码。

4. 特征选择

特征选择是指从数据集中选择最相关的特征,以提高模型性能和降低过拟合的风险。

示例:使用 Scikit-Learn 进行特征选择

Scikit-Learn提供了多种特征选择的方法,例如使用特征重要性排序或利用模型选择特征。

from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectKBest, f_classif

# 加载鸢尾花数据集
iris = load_iris()
X, y = iris.data, iris.target

# 使用 SelectKBest 进行特征选择
selector = SelectKBest(score_func=f_classif, k=2)
X_new = selector.fit_transform(X, y)
print("Selected Features:")
print(X_new)

在这个示例中,加载了鸢尾花数据集,并使用SelectKBest选择了最相关的两个特征。

总结

数据预处理是数据科学流程中的关键步骤,有效的数据预处理可以提高模型的性能。本文介绍了数据预处理中的缺失值处理、特征缩放、数据编码以及特征选择,并提供了详细的示例代码,希望这些示例能够帮助你更好地处理和准备数据用于机器学习任务。


Python学习路线

在这里插入图片描述

更多资料获取

📚 个人网站:ipengtao.com

如果还想要领取更多更丰富的资料,可以点击文章下方名片,回复【优质资料】,即可获取 全方位学习资料包。

在这里插入图片描述
点击文章下方链接卡片,回复【优质资料】,可直接领取资料大礼包。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/197403.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C语言枚举的作用是什么?

我在知乎上看到这个问题,一开始,也有一些疑惑,后面查了一些资料,对于这个问题,简单的说一下我的看法。 枚举有多大 枚举类型到底有多大,占多少空间呢?这个要具体情况具体分析,编译器…

第八节HarmonyOS @Component自定义组件的生命周期

在开始之前,我们先明确自定义组件和页面的关系: 1、自定义组件:Component装饰的UI单元,可以组合多个系统组件实现UI的复用。 2、页面:即应用的UI页面。可以由一个或者多个自定义组件组成,Entry装饰的自定…

LeetCode Hot100 108.将有序数组转为二叉搜索树

题目: 给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。 高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。 方法: class Solution {public…

深信服防火墙设置应用控制策略(菜鸟必看)

PS:前几天发布了关于深信服防火墙路由部署的流程:深信服防火墙路由模式开局部署-手把手教学(小白篇)-CSDN博客 昨天晚上有csdn的朋友联系我,说有一个关于ACL访问的问题要帮忙看一下 解决了以后,写个大概的…

Week-T11-优化器对比试验

文章目录 一、准备环境二、准备数据三、搭建训练网络三、训练模型(1)VSCode训练情况:(2)jupyter notebook训练情况: 四、模型评估 & 模型预测1、绘制Accuracy-Loss图2、显示model2的预测效果 五、总结1…

C++ 泛型编程,函数模版和类模版

1.泛型编程 泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础 就比如说活字印刷术,就是提供一个模具,然后根据模具来印刷出不同的字。 泛型编程跟着类似,提供一个模版,根据这…

五、Microsoft群集服务(MSCS)环境的搭建

一、【目的】 学会利用Windows Server布置群集环境。 二、【设备】 FreeNAS11.2,Windows Server 2019 三、【要求】 学会利用Windows Server布置群集环境,掌握处理问题的能力。 配置表: 节点公网IP(public)内网IP(private)群集IP(clust…

欧拉LINUX 23.09版本上安装ORACLE 19c

前面解决了在RHEL9上安装ORACLE 19C的问题后,发现龙蜥 LINUX23 上可以安装ORACLE19C,网上搜了一下,欧拉 linux 22.03 上,没有成功安装ORACLE 19c 的先例,23.09就更不用说了,但看到的错误,不外服都是缺 libp…

玻色量子真机测试完整报告

​ 真机测试 2023年 2023.8 量子计算突破云渲染资源调度!真机测试完整报告公开! 2023.8 量子计算突破金融信用评分!真机测试完整报告公开! 组合优化问题专题 2023年 2023.7 玻色量子“揭秘”之旅行商问题与Ising建模 2023.…

OPENWRT解决配置pppoe后无法光猫路由管理界面

一、新建一个wan口 二、设置流量转发 设置完成后保存应用即可

pdf加密文件解密(pdf文件解密小工具)

工具放在文章末尾! 1.pdf文件加密后会有很多使用权限的限制很不方便,只要是为了pdf的数据不被二次利用,未加密的pdf功能都是可以正常使用的 2.加密后的pdf使用权限会被限制部分 3.工具只能解决pdf编辑等加密情况,不能解决文件打…

耗时一个星期整理的APP自动化测试工具大全

在本篇文章中,将给大家推荐14款日常工作中经常用到的测试开发工具神器,涵盖了自动化测试、APP性能测试、稳定性测试、抓包工具等。 一、UI自动化测试工具 1. uiautomator2 openatx开源的ui自动化工具,支持Android和iOS。主要面向的编程语言…

神器!使用 patchworklib 库进行多图排版真棒啊

如果想把多个图合并放在一个图里,如图,该如何实现 好在R语言 和 Python 都有对应的解决方案, 分别是patchwork包和patchworklib库。 推介1 我们打造了《100个超强算法模型》,特点:从0到1轻松学习,原理、…

与 PCIe 相比,CXL为何低延迟高带宽?

文章目录 前言1. LatencyPCIE 生产者消费则模型结论Flit 包PCIE/CXL.ioCXL.cace & .mem总结 2. BandWidth常见开销CXL.IO Link efficiencyPCIe Link efficiencyCXL.IO bandwidthCXL.mem/.cache bandwidth 参考 前言 CXL 规范里没有具体描述与PCIe 相比低延时高带宽的原因&…

只会在终端使用Python运行代码?这些高级用法了解了解

大部分同学在终端使用Python可能只是简单的执行代码,但其实结合一些Python内置模块或第三方库可以实现更高级且便捷的用法,一起看看吧 插播,更多文字总结指南实用工具科技前沿动态第一时间更新在公粽号【啥都会一点的研究生】 代码Benchmar…

Linux下基于MPI的hello程序设计

Linux下基于MPI的hello程序设计 一、MPICH并行计算库安装实验环境部署创建SSH信任连接,实现免密钥互相连接node1安装MPICH 3.4配置NFS注意(一定要先看)环境测试 二、HELLO WORLD并行程序设计 一、MPICH并行计算库安装 在Linux环境下安装MPICH执行环境,配…

详细介绍如何使用深度学习自动车牌(ALPR)识别-含(数据集+源码下载)

深度学习一直是现代世界发展最快的技术之一。深度学习已经成为我们日常生活的一部分,从语音助手到自动驾驶汽车,它无处不在。其中一种应用程序是自动车牌识别 (ALPR)。顾名思义,ALPR是一项利用人工智能和深度学习的力量自动检测和识别车辆车牌字符的技术。这篇博文将重点讨论…

11.28 知识回顾(Web框架、路由控制、视图层)

一、 web 框架 1.1 web框架是什么? 别人帮咱们写了一些基础代码------》我们只需要在固定的位置写固定的代码--》就能实现一个web应用 Web框架(Web framework)是一种开发框架,用来支持动态网站、网络应用和网络服务的开发。这大多…

Windows环境下的JDK安装与环境配置

一、JDK下载 1、打开Oracle官方网站下载页 Java Downloads | Oracle 中国 2、选择Java archive页,在版本列表中选择需要下载的版本 3、选择系统环境对应的版本,点击对应的下载按钮,弹出技术许可勾选框 4、勾选Oracle技术许可协议 5、输入Or…

python服装电商系统vue购物商城django-pycharm毕业设计项目推荐

系统面向的使用群体为商家和消费者,商家和消费者所承担的功能各不相同,所对象的权限也各不相同。对于消费者和商家设计的功能如下: 对于消费者设计了五大功能模块: (1) 商品信息:用户可在商品…