RK3568笔记六:基于Yolov8的训练及部署

若该文为原创文章,转载请注明原文出处。

基于Yolov8的训练及部署,参考鲁班猫的手册训练自己的数据集部署到RK3568,用的是正点的板子。

1、 使用 conda 创建虚拟环境
conda create -n yolov8 python=3.8
​
conda activate yolov8
2、 安装 pytorch 等等

根据pytorch自行安装

3、 安装 ,直接使用命令安装

方法有两种,个人使用的是第二种方法:

方法一:

通过pip安装

pip install ultralytics -i https://mirror.baidu.com/pypi/simple

方法二:

通过拉取仓库然后安装

git clone https://github.com/ultralytics/ultralytics
​
cd ultralytics
​
pip install -e .

# 安装成功后,使用命令 yolo 简单看下版本

(yolov8) llh@anhao:/$ yolo version
​
8.0.206
4、简单测试

下载权重文件

wget https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt

*获取测试图片,可以下面位置获取,可能会失败,也可以从配套例程获取

wget https://ultralytics.com/images/bus.jpg

使用 yolo 命令进行测试

yolo detect predict model=./yolov8n.pt source=./bus.jpg
​# 预测图片结果保存在当前 runs 目录下,具体路径是./runs/detect/predict/bus.jpg
参数说明:
# 第一个参数是指任务 [detect, segment, classify], 这里测试目标检测是 detect,该参数
是可选的;
# 第二个参数 model,设置模型,该参数必须指定;
# 其他参数,source 指定要预测的图片路径,imgsz 指定图像尺寸等等,更多参数具体参考下:
https://docs.ultralytics.com/usage/cfg/
5、模型训练

以COCO128为例,训练测试

yolo detect train data=coco128.yaml model=yolov8n.pt epochs=300 imgsz=640

测试

yolo detect predict model=./runs/detect/train/weights/best.pt source=./bus.jpg

6、模型导出

使用 airockchip/ultralytics_yolov8 可以直接导出适配 rknpu 的模型,在 npu 上获得更高的推理效率。

该仓库对模型进行了优化:

• dfl 结构在 NPU 处理上性能不佳,移至模型外部。

• 假设有 6000 个候选框,原模型将 dfl 结构放置于’’框置信度过滤”前,则 6000 个候选框

都需要计算经过 dfl 计算;而将 dfl 结构放置于’’框置信度过滤”后,假设过滤后剩 100 个

候选框,则 dfl 部分计算量减少至 100 个,大幅减少了计算资源、带宽资源的占用。

假设有 6000 个候选框,检测类别是 80 类,则阈值检索操作需要重复 6000* 80 ~= 4.8*10^5 次,占据

了较多耗时。故导出模型时,在模型中额外新增了对 80 类检测目标进行求和操作,用于快速过滤

置信度。

(该结构在部分情况下有效,与模型的训练结果有关) 可以在./ultralytics/nn/modules/head.py

52 行 ~54 行的位置,注释掉这部分优化,对应的代码是:

cls_sum = torch.clamp(y[-1].sum(1, keepdim=True), 0, 1)
y.append(cls_sum)

具体参考下 RKOPT_README.md 。

导出torchscript模型

# 拉取 airockchip/ultralytics_yolov8
git clone https://github.com/airockchip/ultralytics_yolov8.git
cd ultralytics_yolov8
​
# 复制训练的模型 yolov8n.pt 到 ultralytics_yolov8 目录下
# 然后修改./ultralytics/cfg/default.yaml 文件,主要是设置下 model,为自己训练的模型
路径:
model: ./yolov8n.pt # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
data: # (str, optional) path to data file, i.e. coco128.yaml
epochs: 100 # (int) number of epochs to train for
​
# 导出模型:
python ./ultralytics/engine/exporter.py
#导出的模型,保存在当前目录下的 yolov8n_rknnopt.torchscript

导出ONNX模型

yolo export model=path/to/best.pt format=onnx  # export custom trained model
7、RKNN模型转换

模型转换是通过tooolkit2转成rknn模型的,需要先安装toolkit2,具体安装参考正点原子的。

这是使用的是 rknn_model_zoo 仓库 的程序,直接转换模型,

# 拉取 rknn_model_zoo,(注意教程测试时 rknn_model_zoo 的 SHA 是
22462182b91c7d856b59a8ec3e4a25bba8813d17)
git clone https://github.com/airockchip/rknn_model_zoo.git
# 然后切换到 models/CV/object_detection/yolo/RKNN_model_convert 目录下
cd rknn_model_zoo/models/CV/object_detection/yolo/RKNN_model_convert

在录前目录下创建yolov8_rk3568.yml文件,内容如下:

# model_framework: onnx
model_framework: pytorch
model_file_path: /mnt/f/wsl_file/wsl_ai/yolov8/ultralytics_yolov8/yolov8n_rknnopt.torchscript
RK_device_platform: rk3568
# RK_device_id: simulator
dataset: ../../../../../datasets/COCO/coco_subset_10.txt
quantize: True
# pre_compile: online
graph:
in_0:
shape: 1,3,640,640
mean_values: 0
std_values: 255
img_type: RGB
configs:
quantized_dtype: asymmetric_quantized-8
quantized_algorithm: normal
optimization_level: 3
# force_builtin_perm: True

注意三个地方:

1、model_framework可以使用onnx也可以是pytorch
2、model_file_path:模型路径
3、RK_device_platform: 平台

使用命令或者创建脚本执行模型转换等操作

# 使用 rknn_convert.py,转换模型
python ../../../../../common/rknn_converter/rknn_convert.py --yml_path ./yolov8_rk3568.yml

转换的模型保存在当前目录 model_cvt/RK3568/下,模型文件是 yolov8n_rknnopt_RK3568_i8.rknn。

8、部署

使用 rknn_model_zoo 仓库 提供的 RKNN_C_demo,在板端部署

# 拉取 rknn_model_zoo 仓库源码,注意教程测试的 rknn_model_zoo 仓库版本是
22462182b91c7d856b59a8ec3e4a25bba8813d17
​
git clone https://github.com/airockchip/rknn_model_zoo.git
# 切换到~/rknn_model_zoo/libs/rklibs 目录,然后拉取相关库,包括 rknpu2 和 librga
cd ~/rknn_model_zoo/libs/rklibs
git clone https://github.com/rockchip-linux/rknpu2
git clone https://github.com/airockchip/librga
# 然后切换到~/rknn_model_zoo/models/CV/object_detection/yolo/RKNN_C_demo/RKNN_toolkit_2/rknn_yolo_demo 目录
cd rknn_model_zoo/models/CV/object_detection/yolo/RKNN_C_→demo/RKNN_toolkit_2/rknn_yolo_demo
# 运行 build-linux_RK3568.sh 脚本,编译工程(使用系统默认的编译器),最后生成的文件安装
在 build/目录下
./build-linux_RK3568.sh

执行命令进行模型推理:

# 切换到 install/rk3568/Linux/rknn_yolo_demo 目录下,复制前面转换出的 yolov8n_→rknnopt_RK3568_i8.rknn 模型文件到目录下,
# 然后把文件拷贝到开发板上执行下面命令:
./rknn_yolo_demo␣yolov8 q8 ./yolov8n_rknnopt_RK3588_i8.rknn ./model/bus640.jpg
#运行后会在目录下生成out.jpg

参考链接

Quickstart - Ultralytics YOLOv8 Docs

GitHub - ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite

GitHub - airockchip/ultralytics_yolov8: NEW - YOLOv8 🚀 in PyTorch > ONNX > CoreML > TFLite

GitHub - airockchip/rknn_model_zoo

如有侵权,或需要完整代码,请及时联系博主。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/197348.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown

一个奇怪的BUG 这个代码会报下面的错: 但是把模型导入部分注释掉之后就没有这个错误了(第六行) 解决办法:在模型加载后面加入一行代码 matplotlib.use( TkAgg’),这个bug的问题就是模型加载改变了matplotlib使用的终端…

Blazor Table 实现获取当前选中行的功能

这里需要使用到OnClickRowCallBack事件 后台使用案例

Unity-链接MySql5.7

链接MySql5.7 前言: 为什么不选择最新的MySQL8.0或者MySQL8.2呢,实际发现,如果使用这两个版本,虽然能够用同样的方法找到合适的dll,但是在编写代码的过程中往往会卡死,非常的影响效率,因此放弃…

Linux环境安装Java,Tomcat,Mysql,

1、Java的安装 载 jdk1.8 注:此处 CentOS7 是64位,所以下载的是:Linux x64, 文件类型为 tar.gz 的文件 JDK 官网地址:https://www.oracle.com/java/ cd /usr/local/ mkdir jdk cd jdk/tar -xvf jdk-8u202-linux-x64.…

winfrom 插件 ICSharpCode.SharpDevelop 使用 修改图标配置

1.需要安装 SharpDevelop 这个IDE对应的开发小工具 , 下载地址 SharpDevelop download | SourceForge.net 2.安装以及设置中文等其他的条件对应操作步骤,参考 SharpDevelop安装与配置 3.修改 图标配置 找到对应的 BitmapResources.resources 文件…

Linux常见指令基础知识

目录 初始Linux操作系统 Linux背景: 开源 : 发行版本: ​编辑 OS概念,定位: 使用 XShell 远程登录 Linux Linux相关知识 文件是什么? 路径分隔符 (.) 和 (. .&…

小功能实现(十八)生成kml文件

引入依赖 <!--解析、生成kml文件类--><dependency><groupId>de.micromata.jak</groupId><artifactId>JavaAPIforKml</artifactId><version>2.2.0</version></dependency>使用方法 注意&#xff1a;需要什么内容可自行添…

为第一个原生Spring5应用程序添加上Log4J日志框架!

&#x1f609;&#x1f609; 学习交流群&#xff1a; ✅✅1&#xff1a;这是孙哥suns给大家的福利&#xff01; ✨✨2&#xff1a;我们免费分享Netty、Dubbo、k8s、Mybatis、Spring...应用和源码级别的视频资料 &#x1f96d;&#x1f96d;3&#xff1a;QQ群&#xff1a;583783…

leetcode做题笔记1457. 二叉树中的伪回文路径

给你一棵二叉树&#xff0c;每个节点的值为 1 到 9 。我们称二叉树中的一条路径是 「伪回文」的&#xff0c;当它满足&#xff1a;路径经过的所有节点值的排列中&#xff0c;存在一个回文序列。 请你返回从根到叶子节点的所有路径中 伪回文 路径的数目。 示例 1&#xff1a; 输…

操作系统CLOCK算法

操作系统时钟(CLOCK)置换算法_时钟置换算法-CSDN博客 前七步相同 第八步的时候 发现页面在内存中 标记位变成1 但是指针不需要移动。

【数据结构】树与二叉树(廿四):树搜索指定数据域的结点(算法FindTarget)

文章目录 5.3.1 树的存储结构5. 左儿子右兄弟链接结构 5.3.2 获取结点的算法1. 获取大儿子、大兄弟结点2. 搜索给定结点的父亲3. 搜索指定数据域的结点a. 算法FindTargetb. 算法解析c. 代码实现a. 使用指向指针的指针b. 直接返回找到的节点 4. 代码整合 5.3.1 树的存储结构 5.…

一键删除多余内容,批量处理HTML文本,轻松省时!

亲爱的用户们&#xff0c;您是否曾经为了删除HTML文本中的多余内容而烦恼&#xff1f;是否曾经为了批量处理文本而感到困扰&#xff1f;现在&#xff0c;我们为您带来了一款全新的HTML文本处理工具&#xff0c;它可以轻松解决您的问题&#xff01; 首先&#xff0c;在首助编辑…

Nacos2.x配置中心源码分析

概述 源码注释参考 git 仓库&#xff0c;对应流程图后续补充&#xff1b; 启动 nacos nacos 启动类&#xff1a; // com.alibaba.nacos.NacosSpringBootApplication(scanBasePackages "com.alibaba.nacos") ServletComponentScan EnableScheduling public class…

DMX512协议及对接口电路的分析

1、DMX512协议简介 DMX 是Digital MultipleX 的缩写&#xff0c;意为多路数字传输(具有512条信息的数字多路复用”)。DMX512控制协议是美国舞台灯光协会(usITT)于1990年发布的灯光控制器与灯具设备进行数据传输的工业标准&#xff0c;全称是USITTDMX512(1990); DMX512 在其物理…

Roll-A-Ball 游戏

Roll-A-Ball 游戏 1&#xff09;学习资料 b站视频教程&#xff1a;https://www.bilibili.com/video/BV18W411671S/文档&#xff1a; * Roll-A-Ball 教程&#xff08;一)&#xff0c; * Roll-A-Ball 教程&#xff08;二)线上体验roll-a-ball成品 * http://www-personal.umich.e…

前端入门(三)Vue组件化编程、脚手架、插槽插件、存储、vuex、组件事件、动画、代理

文章目录 Vue 组件化编程 - .vue文件非单文件组件组件的注意点组件嵌套Vue实例对象和VueComponent实例对象Js对象原型与原型链Vue与VueComponent的重要内置关系 应用单文件组件构建 Vue脚手架 - vue.cli项目文件结构组件相关高级属性引用名 - ref数据接入 - props混入 - mixin …

Unity安装

DAY1 下载Unity 打开Unity3D官网&#xff0c;下载Unity Hub&#xff0c;管理Unity的软件。链接https://unity.cn/releases (可能需要注册账号&#xff0c;就正常注册登录即可) 如果是新版的hub&#xff0c;可能长下面这个样子&#xff0c;还是英文的&#xff0c;点击圆圈的设…

STM32F103C8T6第7天:

1. 智能小车&#xff1a;让小车动起来&#xff08;360.64&#xff09; 硬件接线 B-2A – PB0B-1A – PB1A-1B – PB2A-1A – PB10其余接线参考上官一号小车项目。 cubemx配置 代码&#xff08;28.smartCar_project1/MDK-ARM&#xff09; 2. 智能小车&#xff1a;串口控制小…

想成为网络安全工程师该如何学习?

一、网络安全应该怎么学&#xff1f; 1.计算机基础需要过关 这一步跟网安关系暂时不大&#xff0c;是进入it行业每个人都必须掌握的基础能力。 计算机网络计算机操作系统算法与数据架构数据库 Tips:不用非要钻研至非常精通&#xff0c;可以与学习其他课程同步进行。 2.渗透技…

计算虚拟化之CPU——qemu解析

解析 qemu 的命令行&#xff0c;qemu 的命令行解析&#xff0c;就是下面这样一长串。 qemu_add_opts(&qemu_drive_opts);qemu_add_opts(&qemu_chardev_opts);qemu_add_opts(&qemu_device_opts);qemu_add_opts(&qemu_netdev_opts);qemu_add_opts(&qemu_nic_…