室内定位(WiFi/UWB/蓝牙等)技术方案概述

室内无法搜索到卫星,这样常规的GPS/北斗定位都无法使用,常规免费的只有运营商的基站定位LBS,但这个精度实在太差,一般都有几十米到几百米的偏差。因此,室内定位一直是个老大难问题。

截至目前,业界比较成熟的方案就是UWB,但UWB基站的造价实在太贵,就目前而言,只有电厂、监狱等有限的资金充裕的单位才能用得起。

寻找价格低廉的室内定位的技术方案,是业界多年翘首以盼的福音,直到蓝牙信标技术方案耀世而出。

AIoT万物智联,智能安全帽、智能头盔、头盔记录仪、执法记录仪、车载DVR/NVR、布控球、智能眼镜、智能手电、无人机4G补传系统等统一接入大型融合通信可视指挥调度平台VMS/smarteye 。

蓝牙信标定位是一种革命性的技术,它摆脱了昂贵且高密度的定位基站,使得系统造价大幅降低,只要移动(视频/定位)终端支持蓝牙,就可配合蓝牙信标实现定位。

WiFi定位

就目前看来,室内定位最简便易行的就是WiFi定位,无需任何施工工厂,只要有厂区、各个楼层的WIFI路由器的定位图,配合安卓系统的执法记录仪、智能安全帽、三防手机等安卓终端,就可轻松的实现室内定位,定位精度在10米左右,可基本定位人员所在的楼层、房间。WiFi定位是目前室内定位机制里面最简单、最容易实施的方式。

蓝牙定位 vs UWB定位

一、蓝牙典型定位技术路线:蓝牙信标

蓝牙信标严格意义来讲不是一种定位技术,而是一种蓝牙信号空间可及的判断;最大优势就是便宜、简单;适合巡检等结合空间位置的行为管理;

2C侧蓝牙信标应用

采用蓝牙信标作为位置锚点,C端采用手机实现和锚点相关内容的展示;

2B侧蓝牙信标应用

  1. 蓝牙信标作为位置锚点,C端采用手机实现巡检打卡应用;

  2. 蓝牙信标做位置锚点,采用标签接收信标广播实现定位;

    由于锚点没有通讯功能,标签必须支持无线通讯功能,厂家一般提供LORA或NB的方案;LoRa和NB都是窄带物联网通讯方案,带宽十分有限,LORA WAN基本不可行,实时性也没有办法保证,只能采用LORA私有协议,要部署LORA网关;LORA采用轮询的数据通讯机制,大数据量的无线数据通讯肯定不能指望,区域标签的数量不能超过二三十个;基于区域容量和定位效果,这种蓝牙信标做锚点+蓝牙标签(LORA)+LORA网关的解决方案,不建议采用。

  1. 采用蓝牙网关+蓝牙标签(蓝牙信标)的方式,蓝牙网关负责通讯;

  2. 这个在室内应用比较广泛的,蓝牙网关作为空间位置标识,实时收集空间存在的蓝牙信标设备;

  3. 这个在医院、学校等场景十分普遍;

  4. 这种方案的优势在于可以基于BLE连接实现类似数据采集的数据通讯;

  5. 这种应用的局限性:空间蓝牙设备的的数量建议不要超过几百个,并且由于BLE广播的通讯非可靠性,建议只是做基于蓝牙信号可及的存在性监测,其他所谓的定位算法,就不要去奢求了,完全不切实际。

  6. 蓝牙信标做位置锚点,智能手机做采集信息实现巡检等功能;(但是这个功能容易被基于RFID的NFC替代/近距离接触)

蓝牙AOA的局限性:由于必须要水平安装,蓝牙AOA不适用室外环境;其次蓝牙AOA的体验也是一般般,环境干扰因素对于蓝牙AOA也是影响巨大;

基于蓝牙技术推荐的位置服务:

1:蓝牙信标做位置锚点,智能手机做采集信息实现巡检等功能;(但是这个功能容易被基于RFID的NFC替代/近距离接触)

2:蓝牙网关+蓝牙信标;使用类似医院等独立空间部署蓝牙网关;采用蓝牙手环或蓝牙标签的方式,实现对于病人以及设备的空间位置管理,同时可以基于BLE实现目标的数据采集;

其他解决方案不推荐,基本坑比较多,尤其是基于蓝牙RSSI的三角定位;

蓝牙更偏向是无线数据通讯技术,而非无线定位技术;

UWB更偏向是无线定位技术,而非无线数据通讯技术;

二、UWB定位方案:

和所有无线技术相比,UWB应该算是最佳的、表现最好的应用于定位的无线通讯技术;

        1. 首先UWB可以选择CH2、CH5、CH9等多个频段;CH2的距离是优势,但是和运营商的5G频段有冲突;CH5基本是ISM非授权频段;CH9近10G频段,一般用于近距离定位;蓝牙普遍选用的就是2.4G的ISM非授权频段,和WIFI有高度重合,2.4G的设备种类以及通讯技术(Zigbee等)也是最多的。

        2. 此外UWB是短脉冲通讯技术,是所有无线通讯技术中TOF测距表现最好、精度最高的。

        3. UWB采用是BPSK无线调制技术,相比FSK和OFDM(蓝牙采用),有更好载噪比表现,同频抗干扰性能更强。

尽管UWB定位实际表现有些差强人意,但是无线定位目前只能依赖UWB;

有很多技术优势的UWB,为啥实际定位差强人意?

        • 首先无线通讯的普遍问题就是信号干扰,尽管UWB采用BPSK的无线信号调制技术,同类的无线通讯技术属于表现好的,但是实际标签发射天线和基站接收天线方向问题,会导致接收信号弱,尤其距离远的情况,由于天线方向问题导致基本无法收到UWB信号。其次同频干扰的问题(比如5G对于CH2的干扰),也会导致UWB无线信号的检测不到或丢失,这种问题尤其在标签和基站距离比较远的情况,更容易出现。

        • 定位算法选择:有了精度不错的UWB的TOF或到达时间,可以选择基于最小二乘法的TOF或TDOA的三角定位;三角定位要求现场环境没有什么遮挡以及干扰,也可以选择基于TOF测距值的AOA定位,同样要求环境没有什么遮挡以及干扰;这种基于两个测距值或者多个测试值实现的定位,往往对于环境的干扰适应性很差。定位的稳定性差强人意。选择基于TOF测距的模糊匹配算法的精细网格化定位,采用的信号的深度学习和相似度匹配定位算法,对于环境干扰的适应性比传统三角定位和AOA定位要好很多。

        • 功耗和成本:UWB的收发功耗基本是BLE的5倍以上,芯片成本也是5倍以上,导致市场接受度不高。

        • 标准化:UWB的标准化进程不如蓝牙,当然某些应用场景,UWB的非标准化以及链路层协议自定义,在一些特殊领域反而得到了应用机会。

三、BLE+UWB结合的出发点:

        1. 2B侧应用基于BLE和UWB信号覆盖相当为基础

        2. 基于BLE的特点实现标签在非UWB定位区域情况下的低功耗

        3. 进入或离开UWB定位区域,采用BLE激活或关闭UWB模块

        4. 基于BLE实现无线数据采集功能

        5. 特别室内独立办公室空间,采用蓝牙AOA实现室内标签精准定位

        1. 2C侧应用基于BLE实现远距离覆盖,UWB实现近距离精准定位

        2. UWB通常采用PDOA或AOA的方位定位(角度+距离)

总结:

面对空间位置需求,首先要明确需求和管理目标,如果蓝牙信标定位可以满足,就不用考虑UWB;如果蓝牙信标定位满足不了,那就老老实实采用UWB,没有再好的无线定位技术可以选择了。、

蓝牙信标最大优势就是简单、便宜

蓝牙Beacon的普遍市场价在二十几,而蓝牙+UWB的Beacon价格在两百左右。到底两者有哪些差别,什么场景蓝牙Beacon就足够了,什么场景需要蓝牙+UWB的Beacon呢?

我们先看一下蓝牙Beacon的情况:

  • 防丢器充当蓝牙外设功能,手机充当主设备;防丢器周期性广播,手机扫描发现防丢器,手机建立蓝牙连接并发送命令;

  • 提前绑定手机和防丢器,当手机收不到防丢器的广播,手机报警;由于有很多情况(比如距离和干扰)都会导致收不到防丢器的蓝牙广播,这个功能的实际体验并不乐观。另外蓝牙的测距基于RSSI,这个可信度也很低,同样造成体验不佳的情况。距离、潮湿空气、金属遮挡以及同频干扰都会导致蓝牙广播信号收不到。

    蓝牙采用2.4G的非授权频道,包括WiFi等很多设备都在采用这个频段,同频干扰尤其严重。

  • 蓝牙技术的本身不是为为了大量的点到多点的数据通讯(蓝牙MESH除外),主设备支持的从设备数量不建议超过二三十个,意味同一环境下目标设备不超过二十个,这对于一些2B场景应用就存在很大局限性。

  • UWB有机会解决容量问题,以及相对可靠的数据通讯保障(相比蓝牙,UWB无线通讯抗干扰能力强)和高精度的测距(可视的测距精度可以保证30厘米,有遮挡会带来误差,但是整体测距效果要远远由于基于RSSI的测距)。

    在多目标(上百个目标)场景,只能选择UWB技术实现定位;

    相比蓝牙技术,基于UWB高精度的测距还是值得信赖的;

    实测基于UWB的PDOA的角度测量,实际效果不是很理想,角度误差偏大;导致PDOA推荐10米以内的应用(这个距离很尴尬,没有太多应用场景价值)。

  • 蓝牙信标只支持存在性检测,UWB可实现精细网格化定位

    蓝牙信标位置管理只是一个蓝牙信号可及的检测,在复杂的金属环境,信号可及的范围很难确认,体验感不好。

    精细网格化定位根据物理空间管理目的,将任意大空间分成不同任意区域,实现目标实时区域管理(Who、What time and Where)。每个区域的边界基于UWB信号建立一个UWB信号学习和匹配的库,采用经典的模式模糊匹配算法,实现目标的区域定位。区域定义十分简单,只需标签在区域边界活动一周就可以。本身是模糊匹配及时路线,对于无线信号的扰动有容忍度和适应性。

隧道定位

一维空间的隧道定位,最优还是UWB定位,一个基站可以覆盖100~500米,精度在1~5米。

电厂、厂区室内定位

可用WIFI定位(精度5-10米),免安装;可用蓝牙iBeacon定位,有简易安装工作,定位精度可到3-5米。

室内定位(UWB/蓝牙等)技术方案概述,https://www.besovideo.com/detail?t=1&i=205

室内定位之蓝牙信标配合安卓系统的智能安全帽、电力作业记录仪, https://www.besovideo.com/detail?t=1&i=267

内置RTK北斗高精度定位的智能安全帽测试报告(MQTT通信),https://www.besovideo.com/detail?t=1&i=132

内置UWB室内高精度定位的智能安全帽-软件说明, https://www.besovideo.com/detail?t=1&i=131

数字化煤场基于UWB的人员高精度定位系统方案,https://www.besovideo.com/detail?t=2&i=997

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/194084.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深度学习黎明时期的LeNet:揭开卷积神经网络的序幕

在深度学习的历史长河中,Yann LeCun 的 LeNet 是一个里程碑式的研究成果,它为后来的卷积神经网络(Convolutional Neural Networks,CNN)的发展奠定了基础。LeNet 的诞生标志着深度学习黎明时期的到来,为人工…

在Linux中部署MeterSphere并且结合内网穿透实现远程访问本地管理页面——“cpolar内网穿透”

文章目录 前言1. 安装MeterSphere2. 本地访问MeterSphere3. 安装 cpolar内网穿透软件4. 配置MeterSphere公网访问地址5. 公网远程访问MeterSphere6. 固定MeterSphere公网地址 前言 MeterSphere 是一站式开源持续测试平台, 涵盖测试跟踪、接口测试、UI 测试和性能测试等功能&am…

VMware虚拟机网络配置详解

vmware为我们提供了三种网络工作模式,它们分别是:Bridged(桥接模式)、NAT(网络地址转换模式)、Host-Only(仅主机模式) 打开vmware虚拟机,我们可以在选项栏的“编辑”下的…

基于51单片机的超声波测距系统【程序+proteus仿真+参考论文+原理图+PCB等16个文件夹资料】

一、项目功能简介 整个设计系统由STC89C52单片机LCD1602显示模块声光报警模块存储模块超声波模块按键模块组成。 具体功能: 1、超声波测量距离,显示在LCD1602。 2、存储模块可以存储超声波报警值。 3、通过按键可设置报警值大小。 4、超声波报警距…

迁移redis数据库中的数据到另一台服务器

方案一 下面我使用的redis是用docker安装的,不是通过下载安装包安装的,所以和我安装方式不一样的小伙伴可以不看,因为很多操作是基于docker的 话不多说,直接开搞! 1.首先一定要确保两台服务器上面的redis版本要一致…

无人机遥控器方案定制_MTK平台无人设备手持遥控终端PCB板开发

随着科技的不断发展和无人机技术的逐步成熟,无人机越来越受到人们的关注。作为一种高新技术,无人机的应用范围不断拓展,包括农业、环境监测、城市规划、运输物流等领域。同时,无人机的飞行控制技术也得到了不断的优化和提升。 早…

[激光器原理与应用-15]:声光调制器(AOM:Acousto-optic modulator)

目录 第1章 概述 1.1 什么是AOM 1.2 AOM的主要参数 第2章 主要工作原理 2.1 光的调制技术 2.2 直接调制与间接调制 2.3 声光调制 2.4 声光调制工作原理 第3章 声光调制器件 3.1 声光调制器件的类型 3.2 应用 3.3 主要厂家 第4章 声光调制器系统 4.1 系统组成 …

Java(八)(可变参数,Collections,小案例:斗地主游戏小案例:斗地主游戏,Map集合,Stream流)

目录 可变参数 Collections 小案例:斗地主游戏 Map集合 Map的常用方法 map集合的遍历 键找值 键值对 Lambda 表达式 HashMap底层原理 集合的嵌套 Stream流 获取集合或数组的Stream流 Stream流的方法 可变参数 就是一种特殊的形参,定义在方法和构造器的形参列表中,…

Bitcoin SV 和 Bitcoin Core 之间首次跨链原子交换

我们已经执行了 Bitcoin SV 和 Bitcoin Core 之间的首次原子交换。 这一成就代表了比特币 SV 的重大进步,以去信任的方式促进了与其他区块链的无缝互操作性。 图片源自Gemini 在上一篇文章中,我们解释了原子交换的高级理论。 我们深入研究了使用哈希时间…

[设计模式] 常见的设计模式

文章目录 设计模式的 6 大设计原则设计模式的三大分类常见的设计模式有哪几种1. 单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点。(连接池)1. 饿汉式2. 懒汉式3. 双重检测 2. 工厂模式3. 观察者模式● 推模型● 拉…

Apache Doris 整合 FLINK 、 Hudi 构建湖仓一体的联邦查询入门

1.概览 多源数据目录(Multi-Catalog)功能,旨在能够更方便对接外部数据目录,以增强Doris的数据湖分析和联邦数据查询能力。 在之前的 Doris 版本中,用户数据只有两个层级:Database 和 Table。当我们需要连…

嵌入式八股 | 笔试面试 | 校招秋招 | 详细讲解

〇、前言 作者:赛博二哈 本嵌入式八股撰写初衷:当时求职翻遍了我能找到的所有八股,不论是嵌入式的,计算机基础的,C艹的,都很难看下去,细究其原因,有个最大的痛点: 大部…

Python读取Ansible playbooks返回信息

一.背景及概要设计 当公司管理维护的服务器到达一定规模后,就必然借助远程自动化运维工具,而ansible是其中备选之一。Ansible基于Python开发,集合了众多运维工具(puppet、chef、func、fabric)的优点&#x…

使用opencv的matchTemplate进行银行卡卡号识别

![字体文件](https://img-blog.csdnimg.cn/3a16c87cf4d34aceb0778c4b20ddadb2.png#pic_center import cv2 import numpy as npdef show_img(img, name"temp"):img cv2.resize(img, (0, 0), fx3, fy3)cv2.imshow(name, img)cv2.waitKey(0)cv2.destroyAllWindows()de…

242. 有效的字母异位词

这篇文章会收录到 :算法通关村第十二关-白银挑战字符串经典题目-CSDN博客 242. 有效的字母异位词 描述 : 给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。 注意:若 s 和 t 中每个字符出现的次数都相同,则称 s 和 t …

VsCode 调试 MySQL 源码

1. 启动 MySQL 2. 查看 MySQL 进程号 [root ~]# ps -ef | grep mysqld root 21479 1 0 Nov01 ? 00:00:00 /bin/sh /usr/local/mysql/bin/mysqld_safe --datadir/usr/local/mysql/data --pid-file/usr/local/mysql/data/mysqld.pid root 26622 21479 0 …

【JDK21】详解虚拟线程

目录 1.概述 2.虚拟线程是为了解决哪些问题 2.1.线程切换的巨大代价 2.2.哪些情况会造成线程的切换 2.3.线程资源是有限的 3.虚拟线程 4.适用场景 1.概述 你发任你发,我用JAVA8?JDK21可能要对这句话say no了。 现在Oracle JDK是每4个版本&#x…

minio分布式存储系统

目录 拉取docker镜像 minio所需要的依赖 文件存放的位置 手动上传文件到minio中 工具类上传 yml配置 config类 service类 启动类 测试类 图片 视频 删除minio服务器的文件 下载minio服务器的文件 拉取docker镜像 拉取稳定版本:docker pull minio/minio:RELEASE.20…

FLASK博客系列6——数据库之谜

我们上一篇已经实现了简易博客界面,你还记得我们的博客数据是自己手动写的吗?但实际应用中,我们是不可能这样做的。大部分程序都需要保存数据,所以不可避免要使用数据库。我们这里为了简单方便快捷,使用了超级经典的SQ…

MySOL常见四种连接查询

1、内联接 &#xff08;典型的联接运算&#xff0c;使用像 或 <> 之类的比较运算符&#xff09;。包括相等联接和自然联接。 内联接使用比较运算符根据每个表共有的列的值匹配两个表中的行。例如&#xff0c;检索 students和courses表中学生标识号相同的所有行。 2、…