2023年亚太杯APMCM数学建模大赛A题水果采摘机器人的图像识别

2023年亚太杯APMCM数学建模大赛

A题 水果采摘机器人的图像识别

原题再现

  中国是世界上最大的苹果生产国,年产量约3500万吨。同时,中国也是世界上最大的苹果出口国,世界上每两个苹果中就有一个是中国出口的,世界上超过六分之一的苹果是中国出口的。中国提出了“一带一路”倡议,这是建设未来共享的国际社会的重要支柱。由于这一举措,越南、孟加拉国、菲律宾、印度尼西亚等沿线国家已成为中国苹果的主要出口目的地。
在这里插入图片描述
  苹果采摘主要依靠手工采摘。苹果成熟后,几天内就需要大量的采摘工人。但大多数当地农民在自己的果园里种植苹果。此外,农业工人的老龄化和年轻人离开村庄工作的现象导致了苹果采摘季节的劳动力短缺。为了解决这一问题,中国从2011年左右开始研究能够摘苹果的机器人,并取得了重大进展。
  然而,由于果园环境与受控实验环境的差异,各种苹果采摘机器人在世界范围内的推广应用还不够理想。在复杂、非结构化的果园环境中,现有的机器人大多无法准确识别障碍物,如“树叶遮挡”、“树枝遮挡”、“水果遮挡”、“混合遮挡”等,如果直接采摘苹果而不根据实际场景做出准确判断,则损坏水果的风险很高,甚至对采摘手和机械臂造成伤害。这对收获效率和果实质量产生不利影响,导致更大的损失。此外,对不同采收果实的识别和分类也非常重要,如分类、加工、包装、运输等程序。然而,许多水果的颜色、形状和大小与苹果非常相似,这给苹果的采后识别带来了很大的困难。
  本次竞赛的目的是通过分析和提取标记水果图像的特征,建立一个识别率高、速度快、准确度高的苹果图像识别模型,并对图像进行数据分析,如自动计算图像中苹果的数量、位置、成熟度,估计图像中苹果的质量等。具体任务如下:

  问题1:数苹果
  基于附件1中提供的已采收苹果图像数据集,提取图像特征,建立数学模型,统计每个图像中的苹果数,绘制附件1中所有苹果分布的直方图。

  问题2:估计苹果的位置
  根据附件1中提供的已收获苹果的图像数据集,以图像左下角为坐标原点,识别每个图像中苹果的位置,并绘制附件1中所有苹果几何坐标的二维散点图。

  问题3:估计苹果的成熟状态
  根据附件1提供的已采收苹果图像数据集,建立数学模型,计算每幅图像中苹果的成熟度,并绘制附件1中所有苹果成熟度分布的直方图。

  问题4:估计苹果的质量
  根据附件1中提供的已收获苹果的图像数据集,以图像左下角为坐标原点,计算每幅图像中苹果的二维面积,估计苹果的质量,并绘制附件1中所有苹果的质量分布直方图。

  问题5:苹果的识别
  基于附件2提供的采集水果图像数据集,提取图像特征,训练苹果识别模型,识别附件3中的苹果,并绘制附件3中所有苹果图像ID号的分布直方图。

import cv2
import torch
import torchvision
import numpy as np
from torchvision import transforms, utils
from matplotlib import pyplot as plt

CLASS_NAMES = ['background', 'apple']
COLORS = np.random.uniform(0, 255, size=(len(CLASS_NAMES), 3))

def load_model():
    model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
    model.eval()
    return model
    
def load_and_process_image(image_path):
    image = cv2.imread(image_path)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    transformed = transforms.Compose([
        transforms.ToTensor(),
        transforms.Resize((800, 800)),
    ])
    image = transformed(image)
    return image.unsqueeze(0)



model = load_model()

import glob
import os
def visualize(image, boxes, labels, title,i):
    image = image.permute(1, 2, 0).numpy()
    fig = plt.figure(figsize=(8, 8))
    plt.imshow(image)
    ax = plt.gca()
    for i in range(len(boxes)):
        xmin, ymin, xmax, ymax = boxes[i]
        color = 'r'
        rect = plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, edgecolor=color, linewidth=2)
        ax.add_patch(rect)
        text = '{:.2f}'.format(scores[i])
        plt.text(xmin, ymin-5, text, fontsize=8, bbox=dict(facecolor=color, alpha=0.5, pad=1), color='white')
    plt.axis('off')
    plt.title(title)
    plt.savefig('img/Q1_{}.png'.format(i),dpi=100)
    plt.show()

# 循环读取图片
image_paths = sorted(glob.glob(os.path.join('Attachment/Attachment 1', '*.jpg')))
i=0
test = []
count_list = []
for image_path in image_paths:
    image = load_and_process_image(image_path)
    det_pred = model(image)
    boxes = det_pred[0]['boxes'].detach().numpy()
    scores = det_pred[0]['scores'].detach().numpy()
    labels = det_pred[0]['labels'].detach().numpy()
    
    threshold = 0.5
    idx = scores > threshold
    boxes = boxes[idx]
    scores = scores[idx]
    labels = labels[idx]
    
    num_apples = len(boxes)
    count_list.append(num_apples)
    print('第{}张图片中苹果的数量为{}个'.format(i, num_apples))
    apple_locs = []
    for j in range(num_apples):
        xmin, ymin, xmax, ymax = boxes[j]
        apple_loc = (xmin, ymin, xmax, ymax)
        apple_locs.append(apple_loc)
    if i <= 3:
        visualize(image[0], boxes, labels, 'Image {}'.format(i),i)
    i+=1
# 绘制直方图
plt.hist(count_list, bins=range(max(count_list) + 2))
plt.xlabel("Apple count")
plt.ylabel("Image count")
plt.savefig('apple_number.png',dpi=300)
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/193889.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Docker-简介、基本操作

目录 Docker理解 1、Docker本质 2、Docker与虚拟机的区别 3、Docker和JVM虚拟化的区别 4、容器、镜像的理解 5、Docker架构 Docker客户端 Docker服务器 Docker镜像 Docker容器 镜像仓库 Docker基本操作 1、Docker镜像仓库 镜像仓库分类 镜像仓库命令 docker lo…

CV计算机视觉每日开源代码Paper with code速览-2023.11.22

点击CV计算机视觉&#xff0c;关注更多CV干货 论文已打包&#xff0c;点击进入—>下载界面 点击加入—>CV计算机视觉交流群 1.【语义分割】Mobile-Seed: Joint Semantic Segmentation and Boundary Detection for Mobile Robots 论文地址&#xff1a;https://arxiv.or…

高效视频剪辑:按指定时长批量分割视频,释放无尽创意

随着数字媒体技术的不断发展&#xff0c;视频剪辑已经成为日常生活中不可或缺的一部分。无论是制作电影、电视剧&#xff0c;还是创意生活短视频&#xff0c;视频剪辑都扮演着重要的角色。然而&#xff0c;对于许多非专业人士来说&#xff0c;视频剪辑可能是一项复杂而耗时的任…

C#,《小白学程序》第二十五课:大数乘法(BigInteger Multiply)的Karatsuba算法及源代码

1 文本格式 /// <summary> /// 《小白学程序》第二十五课&#xff1a;大数&#xff08;BigInteger&#xff09;的Karatsuba乘法 /// Multiplies two bit strings X and Y and returns result as long integer /// </summary> /// <param name"a">&…

如何在Ubuntu系统上安装Redis

Redis的下载 Redis安装包分为windows版和Linux版当前示例中介绍的是Linux版本Linux的下载地址&#xff1a;Index of /releases/ (redis.io)本次下载的压缩包为&#xff1a;redis-6.2.14.tar.gzRedis的安装 将压缩包通过ssh远程工具上传到Linux服务器中解压压缩包 tar -zxvf red…

深度学习18

卷积层 查看每个数据 使用tensorboard查看 池化层 使用数据集进行训练 创建实例&#xff0c;使用tensorboard进行显示 最大池化保留了图片信息&#xff0c;神经网络训练的数据量大大减小&#xff0c;可以加快训练 非线性激活 非线性激活为神经网络加入了一些非线性的特质…

蓝桥杯每日一题2023.11.27

题目描述 星系炸弹 - 蓝桥云课 (lanqiao.cn) 题目分析 对于此题目一一枚举即可 #include<bits/stdc.h> using namespace std; bool is_r(int n) {if((n % 4 0 && n % 100 ! 0)|| n % 400 0)return true;return false; } int mm[13] {0, 31, 28, 31, 30, 3…

【日常总结】优雅升级Swagger 2 升至 3.0, 全局设置 content-type application/json

目录 一、场景 二、问题 三、解决方案 四、延伸 上一节&#xff1a;【日常总结】Swagger-ui 导入 showdoc &#xff08;优雅升级Swagger 2 升至 3.0&#xff09;-CSDN博客 一、场景 接上一节&#xff1a;在 Swagger3Config extends WebMvcConfigurationSupport&#xff0c…

ECShop 4.x collection_listSQL注入

漏洞描述 ECShop是一款B2C独立网店系统&#xff0c;适合企业及个人快速构建个性化网上商店。系统是基于PHP语言及MYSQL数据库构架开发的跨平台开源程序 影响版本&#xff1a;ecshop4.0.7及以下 漏洞环境及利用 docker环境搭建 访问8080端口&#xff0c;数据库主机为mysql&a…

vue day2

1、指令修饰符&#xff1a;.指明一些指令后缀&#xff0c;不同后缀封装不同处理操作 按键修饰符&#xff1a;keyup.enter v-model修饰符&#xff1a; v-model.trim&#xff1a;去首位空格 v-model.number&#xff1a;转数字 事件修饰符&#xff1a; 阻止事件冒泡&#xff1…

毫米波雷达DOA角度计算-----DBF算法

DBF算法实现程序如下&#xff1a; 输入&#xff1a; parameter 是 毫米波雷达的参数设置。 antVec 是 目标点的8个虚拟天线的非相参积累数据。 function [angle,doa_abs] dbfMethod(parameter,antVec)txAntenna parameter.txAntenna; % 发射天线 [1 1]rxAntenna para…

交换技术-电路交换-报文交换-分组交换

交换技术是指主机之间、通信设备之间或主机与通信设备之间为交换信息所采用的数据格式和交换装置的方式。按交换技术可分为&#xff1a;电路交换、报文交换和分组交换。 电路交换 交换(switching)&#xff0c;就是按照某种方式动态地分配传输线路的资源。 电路交换是在源结点…

MFC、VC++操作excel后,excel程序进程无法正常退出的非暴力处理方法

先说处理方式 1、最low的方式&#xff1a;强制结束进程 //打开进程得到进程句柄 HANDLE hProcessOpenProcess(PROCESS_ALL_ACCESS,FALSE,Pid); if(hProcess!NULL) { //结束进程 if (TerminateProcess(hProcess,0)){printf("结束进程成功\n");return 0;} }这种方式…

带你用uniapp从零开发一个仿小米商场_10. 首页开发

图标菜单栏开发 轮播图开发完成后,就是图标菜单栏了 可以看出这些图标都是一样的样式,所以可以勇哥flex布局让他们每个占百分之20 代码如下,既然都是一样的那就直接用个循环嵌套一下 data数据如下 同样,为了能让这段代码能在别的地方也用到,我直接把它封装成组件 <templ…

nodejs+vue+elementui学生竞赛管理系统65o97

高校人才培养计划的重要组成部分&#xff0c;是实现人才培养目标、培养学生体育 能力与创新思维、学生竟赛管理系统检验学生综合素质与实践能力的重要手段与综合性实践教学环节。而我所在学院多采用半手工管理学生竟赛的方式&#xff0c;所以有必要开发学生竟赛管理系统来对学生…

成为AI产品经理——TPR、FPR、ROC、AUC

目录 一、PR图、BEP 1.PR图 2.BEP 二、灵敏度、特异度 1.灵敏度 2.特异度 三、真正率、假正率 1.真正率 2.假正率 三、ROC、AUC 1.ROC 2.AUC 四、KS值 一、PR图、BEP 1.PR图 二分类问题模型通常输出的是一个概率值&#xff0c;我们需要设定一个阈值&#xff…

金蝶Apusic应用服务器 任意文件上传漏洞复现

0x01 产品简介 金蝶Apusic应用服务器&#xff08;Apusic Application Server&#xff0c;AAS&#xff09;是一款标准、安全、高效、集成并具丰富功能的企业级应用服务器软件&#xff0c;全面支持JakartaEE8/9的技术规范&#xff0c;提供满足该规范的Web容器、EJB容器以及WebSer…

【uniapp】微信运行报错TypeError_ Cannot read property ‘FormData‘ of undefined

文章目录 一、报错详情&#xff1a;二、解决&#xff1a; 一、报错详情&#xff1a; 二、解决&#xff1a; npm install axios0.27.2 #或者 npm install axios1.3.4

“于阗佛国、美食和田”——“万人游新疆”推广活动走进企业

11月23日&#xff0c;在安徽省文旅厅、安徽省援疆指挥部、和田地区文旅局的指导和支持下&#xff0c;由安徽环球文旅集团组织的“于阗佛国、美食和田”——“万人游新疆”分享会在安徽合肥市财富广场瑞众保险&#xff08;原华夏保险&#xff09;3楼黄山厅会议室举行&#xff0c…

Django总结

文章目录 一、Web应用Web应用程序的优点Web应用程序的缺点应用程序有两种模式C/S、B/S C/S 客户端/服务端局域网连接其他电脑的MySQL数据库1.先用其他电脑再cmd命令行ping本机ip2.开放MySQL的访问 B/S 浏览器/服务端基于socket编写一个Web应用 二、Http协议1.http协议是什么2.h…