【Linux】第二十一站:文件(一)

文章目录

  • 一、共识原理
  • 二、C系列文件接口
  • 三、从C过渡到系统:文件系统调用
  • 四、访问文件的本质

一、共识原理

  1. 文件 = 内容 + 属性

  2. 文件分为打开的文件没打开的文件

  3. 打开的文件:是谁打开的?是进程!----所以研究打开的文件本质是研究进程和文件的关系!

  4. 没打开的文件:在哪里放着呢?在磁盘上放着。我们最关注什么问题?没有被打开的文件非常多。文件如何被分门别类的放置好—即我们要快速的进行增删查改—即快速的找到文件

所以上面的问题总结下来就是如何存储?

  1. 一个文件被打开,必须先被加载到内存中!

进程 : 打开的文件 = 1:n(即一个进程可以打开任意个文件)

由以上两点我们可以得到:操作系统内部,一定存在大量的被打开的文件! ----OS要不要管理这些被打开的文件呢? —肯定是要的,那么怎么管理呢?----先描述,在组织 ---- 所以在内核中,一个被打开的文件都必须有自己的文件打开对象,包含文件的很多属性。struct XXX {文件属性; struct XXX* next};

二、C系列文件接口

如下所示,在下面这个函数中

第一个参数是路径,第二个参数是打开方式。返回值是FILE*即文件指针

image-20231125151450730

如下所示,当我们使用如下代码的时候

#include <stdio.h>

int main()
{
    FILE* fp = fopen("log.txt","w");
    if(fp == NULL)
    {
        perror("fopen");
        return 1;
    }
    fclose(fp);
    return 0;
}

因为我们是以写的方式打开文件,所以如果不存在这个文件,他会自动创建一个这样的文件

image-20231125151902300

注意这里的打开文件的路径和文件名,默认在当前路径下新建一个文件。

那么这里当前路径是什么呢?其实是进程的当前路径cwd

比如下面的代码中

#include <stdio.h>
#include <unistd.h>

int main()
{
    printf("PID:%d\n",getpid());
    FILE* fp = fopen("log.txt","w");
    if(fp == NULL)
    {
        perror("fopen");
        return 1;
    }
    fclose(fp);
    sleep(1000);
    return 0;
}

我们可以去查看一下它的当前目录

image-20231125152707828

在这里,如果我们更改了当前进程的cwd,就可以把文件新建到其他目录了

而我们在一个进程中更改当前目录,可以使用chdir

image-20231125152950457

所以,我们可以使用如下代码

#include <stdio.h>
#include <unistd.h>

int main()
{
    chdir("/home/jby_1");
    printf("PID:%d\n",getpid());
    FILE* fp = fopen("log.txt","w");
    if(fp == NULL)
    {
        perror("fopen");
        return 1;
    }
    fclose(fp);
    sleep(1000);
    return 0;
}

我们可以观察一下运行结果。可以发现这个文件去对应的路径创建了。

image-20231125153527696

我们再看一下当前的目录

image-20231125153633149

以上是文件的打开,我们现在重点来看一下文件写入的操作

如下是文件写入的函数

它的作用是将nmemb个size大小的ptr处的数据写入到一个文件中

image-20231125155557844

如下代码所示

#include <stdio.h>
#include <unistd.h>
#include <string.h>
int main()
{
    printf("PID:%d\n",getpid());
    FILE* fp = fopen("log.txt","w");
    if(fp == NULL)
    {
        perror("fopen");
        return 1;
    }
    
    const char* message = "hello linux message";
    fwrite(message,strlen(message),1,fp);

    fclose(fp);
    return 0;
}

运行结果如下所示

image-20231125160850651

image-20231125160903359

但是如果我们将上面代码的message修改了之后

image-20231125161038623

我们在运行一下,里面的内容也随之改变了

image-20231125161321371

这里我们会发现,原来文件的内容全部不见了。所以说w方法写入之前,都会对文件进行清空处理

这就类似于之前的重定向,就是相当于用w的方法打开了文件。然后写入内容

image-20231125161744002

所以,如果我们使用重定向的时候,前面什么也没有,就相当于清空了这个文件。当我们用w的方法打开一个文件以后,里面什么也都不会有了。

那么现在我们再来看一下上面这个代码

我们前面在这里没有+1,不过c语言中,默认会添加上\0,那么这里需要加1吗

image-20231125162847096

我们先运行一下,然后我们就会发现,这个文件里面的内容就变成了这样了,出现了一个乱码

image-20231125162953414

所以说,这里是不需要+1的,因为字符串后加上\0是C语言的规定,与文件有什么关系呢?

不过在打开文件的方式中,有一个方式是a方式,它是在文件的结尾写。如果文件不存在,则创建一个文件

我们试一下下面这个代码

image-20231125163441508

运行结果为

image-20231125163522699

所以说像我们之前的>>追加重定向,其实就是a方式的打开文件

所以w/a都是写入,w清空并从头写,a在文件结尾,追加写!

我们知道Linux下一切皆文件。在C语言中默认会打开三个流,stdin,stdout,stderr。如下图所示,这三个流的类型就是文件指针。

image-20231125164227819

其实类似的,C++中也会默认打开三个流:cin && cout && cerr

如果我们想向显示器打印也是可以的

image-20231125165627108

我们先看下面的代码。使用fprintf,我们也可以实现前面的在文件中打印的操作

image-20231125165424217

image-20231125165539739

对于fprintf,我们也可以将它的第一个流改为stdout

image-20231125165729504

这样的话,运行结果为,就成功的向显示器打印了

image-20231125165747352

如果我们想在stderr流中去写的话

image-20231125165900674

但从运行结果来看,似乎好像没有什么太大的区别

image-20231125165922307

其实

image-20231125170050877

三、从C过渡到系统:文件系统调用

我们知道,文件其实是在磁盘上的,磁盘是外部设备。所以访问文件其实是访问硬件!

我们知道计算机中是分层的

用户

程序 < - std lib / c / c++

系统调用

操作系统

硬件驱动

硬件

我们知道我们是不可直接访问硬件的,必须要自顶向下贯穿访问。而操作系统不相信任何人,所以就需要提供系统调用!

所以几乎所有的库只要是访问硬件设备,必定要封装系统调用。即printf/fprintf/fscanf/fwrite/fread/fgets/gets/…这些都是库函数,他们必定要封装系统调用接口

如下所示,这些就是文件系统调用接口

image-20231125173109123

我们先只考虑这两个open函数。

这两个open系统调用接口,一个有两个参数,一个有三个参数

上面的这个是下面的子集

所以我们先只谈三个参数的open

int open(const char *pathname, int flags, mode_t mode);

在这里,第一个参数是对应文件的路径:可是是绝对/相对都可以。也可以直接是文件名,那么默认当前目录

而第二个参数中,我们可以看到如下所示

image-20231125174502790

即flag就是一个打开的模式。必须包含O_RDONLY,O_WRONLY或者O_RDWR。

这些其实就是比特位的传参方式。

对于它的返回值,如果失败返回-1

我们先看如下代码

image-20231125175648807

运行结果为,打开失败了

image-20231125175754441

这是因为,我们刚刚用到的这个O_WRONLY选项它并不会新建文件。我们得告诉操作系统,如果文件不存在,我们需要新建它。所以我们还得加上O_CREAT选项

image-20231125180012284

运行结果为

image-20231125180029891

但是我们发现这里新创建的文件的权限是完全不对的

这是因为在linux中,要创建一个文件必须得告诉权限是什么。所以就需要第三个参数了。设置好权限

image-20231125180218285

此时新建的文件的权限已经不是刚刚那种乱码的样子了

image-20231125180326962

不过这里我们发现创建的文件它的权限也不是666,而是664,这是因为我们之前所说的,linux创建一个文件有默认的umask。这是由于这个umask是0002,所以最后一个才出现了一些问题

image-20231125180445133

但是如果我们非要创建一个666的文件。我们就需要用这个umask系统调用了

image-20231125180857722

它可以将代码里面的umask给修改掉。这里只影响该进程,不影响系统的

由于就近原则, open就会听进程的umask。

image-20231125181140151

运行结果为。可以看到,权限确实被改为了666

image-20231125181127957

对于这个open函数,它的返回值为一个int,这个整数我们称为file descriptor,即文件描述符,如果打开失败,则为-1。

如果我们想要关闭一个文件,可以用close

image-20231125182748486

它的参数正好就是文件描述符,所以我们可以传入一个文件描述符,就可以关闭对应的文件了

image-20231125182902897

还有一个系统调用是write

image-20231125183108619

它的功能是向fd文件中写入buf的count字节

image-20231125183401275

运行结果为

image-20231125183448003

如果我们紧接着将字符串改短一些

image-20231125184026136

那么最终的结果为

image-20231125184054054

现象就是,原来的内容都保留着,但是会从文件开始覆盖式的写入,但是并不会清空。

那么如果我们也想做到清空操作呢?

在我们打开文件的时候,即open函数中的第二个参数,我们可以使用O_TRUNC,即清空

image-20231125184707096

image-20231125184411874

此时我们就可以看到,原来的就被清空了

image-20231125184500466

那么如果我们想要实现追加写的功能呢?我们可以使用O_APPEND

image-20231125185213226

image-20231125185300323

运行结果为

image-20231125185350859

这样就实现了追加的功能

所以我们得到的结论是

FILE* fp = fopen("log.txt", "a");
//上面的代码下层一定封装了下面的系统调用接口
int fd = open("log.txt", O_WRONLY|O_CREAT|O_APPEND, 0666);
FILE* fp = fopen("log.txt", "w");
//上面的代码下层一定封装了下面的系统调用接口
int fd = open("log.txt", O_WRONLY|O_CREAT|O_TRUNC, 0666);

所以说,无论是什么语言,最终底层一定会采用同样的接口。底层都是open,只是他们的上层有所区别罢了。

不过我们会好奇的是,上层的函数返回值是指针,而下层的系统调用接口的返回值是int,它们是如何联系起来的呢?

四、访问文件的本质

如下图所示,我们知道,文件都是在磁盘中存储着的,并且文件需要由一个进程来打开,那么进程要打开这个文件。就需要为这个文件创建对应的内核数据结构,即struct file。这个结构体里面存储着一个被打开文件的各种信息。当打开了多个文件的时候,这些结构体就会用一个双向链表连接起来。

也就是先描述在组织,此时对文件的管理就变为了对这个链表的增删查改

image-20231125202346970

可是我们的系统存在多个进程。那么哪一个文件是哪一个进程的呢?所以我们需要建立对应关系

如下图所示,我们的进程PCB结构体里面就有一个指针它指向struct files_struct这样的一个结构体,这个结构体里面,有一个struct file* fd_array[]数组,数组里面存储着很多struct file*指针,然后每当这个进程打开一个文件时,要创建一个struct file结构体,然后将这个结构体的地址放入一个没有被使用的下标中。

image-20231125203953104

而这个表就是文件描述符表。而前面的open系统调用中,这个返回值,就是对应文件描述符表中的下标。

image-20231125204956050

所以这个fd,本质就是一个数组的下标。我们使用write这些接口的时候就需要使用文件描述符来进行辨认文件

image-20231125205218613

所以最终,文件管理和进程管理就通过这个下标产生了关联

image-20231125205533973

我们也许会思考,既然都已经让进程管理起来了文件,为什么要让文件用双链表呢?因为进程也可能会崩掉。

现在我们已经了解了访问文件的本质了,open的返回值其实就是文件描述符表的下标,那么既然如此。我们来验证一下

image-20231125210152268

运行结果为

image-20231125210220783

我们可以在多验证一些

image-20231125210537992

运行结果为

image-20231125210555886

这里返回连续的下标我们也能理解,我们也知道失败会返回-1。那么0,1,2这些下标在哪呢?

我们会注意到,0,1,2刚好是3个。在C语言中刚好要打开三个流

image-20231125210804945

C语言认为要打开三个,linux下一切皆文件。

所以每一个被打开的文件,它在底层根本就不存在这个FILE*流,在操作系统中只认fd。

所以我们现在可以验证一下,这三个流就是0,1,2这三个文件

image-20231125211320279

运行结果为

image-20231125211349480

所以这两个分别为stdout,stderr

我们现在在验证一下stdin

对于这个我们可以用read系统调用接口

image-20231125211457674

image-20231125212234495

运行结果为

image-20231125212300357

注意在这里,由于操作系统并不知道我们读取的是字符串,它最后也不会加上\0,所以我们需要自己加上

这样一来也就验证了0是stdin

所以当一个C语言程序启动的时候,会打开三个标准输入输出流,这个是C语言的特性吗?

答案显然不是,是操作系统的特性,进程默认会打开键盘,显示器,显示器

那么为什么操作系统要这么做?

因为我们电脑刚打开,显示器,键盘早就被操作系统打开了。我们在编程的时候,必须得用显示器和键盘输入和查看结果,所以语言默认都能打开。

那么在C语言中这个FILE是什么呢?

这个FILE是C库自己封装的一个结构体,这个结构体里面必须包含文件描述符。因为操作系统只认文件描述符。

我们可以来证明一下

image-20231125213516775

运行结果为

image-20231125213542822

所以现在我们就知道了这里有两种的封装了。

一种是库函数封装了系统调用接口,一种是FILE封装了文件描述符

如果我们直接将1号文件给关了

image-20231125213830203

我们会发现什么也没有了

image-20231125213845164

因为一号就是显示器文件。而printf里面必然调用了这个1号文件描述符。

如果我们将代码改为下面的

image-20231125214442540

那么结果为

image-20231125214457736

因为我们用的是2号文件去写的。我们关的只是一号文件

还有一点是,在struct file结构体里面,其实还有一个信息是引用计数count。因为可能多个文件描述符指向同一个文件。一个文件描述符指向就是1,两个指向就是2.

image-20231125214924406

所以我们关闭文件去调用close的时候,它的工作其实很简单,只需要引用计数减减,然后将这个指针位置置空。然后判断这个引用计数是否为0,如果不为空则什么也不用做到,如果为空,那么就在去回收这个struct file对象。

所以这就是我们刚刚关闭了1号文件,2号文件还能继续打印的原因。因为仅仅只是引用计数减减了。

而C++中的那些fstream中也是一样的包含fd的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/192210.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Redis之C语言底层数据结构笔记

目录 动态字符串SDS Dict ZipList QuickList ​ SkipList 动态字符串SDS Dict ZipList QuickList SkipList

SAP创建ODATA服务-Structure

SAP创建ODATA服务-Structure 1、创建数据字典 进入se11创建透明表ZRICO_USR,并创建对应字段 2、创建OData service 首先创建Gateway service project&#xff0c;事务码&#xff1a;SEGW&#xff0c;点击Create Project 按钮 Gateway service Project分四个部分&#xff1a…

ubuntu20.04安装tensorRT流程梳理

目标&#xff1a;先跑demo&#xff0c;再学习源码 step1, 提前准备好CUDA环境 安装CUDA&#xff0c;cuDNN 注意&#xff0c;CUDA&#xff0c;cuDNN需要去官网下载.run和tar文件安装&#xff0c;否则在下面step4 make命令会报找不到cuda等的错误&#xff0c;具体安装教程网上…

COMP2121 Discrete Mathematics

COMP2121 Discrete Mathematics 需要可WeChat: zh6-86

Unity 打印每次代码保存耗时

unity每次编辑代码的时候&#xff0c;都需要保存&#xff0c;unity右下角的小圆圈总是转个不停&#xff0c;那么每次编辑代码后&#xff0c;unity到底需要多久时间呢&#xff0c;下面就有代码可以获取 保存时间。 using UnityEngine; using UnityEditor; using UnityEditor.Com…

开源万能DIY预约小程序源码系统+自由DIY,海量模板任选择,附带完整的搭建教程

在移动互联网时代&#xff0c;用户对于预约服务的便捷性和高效性需求日益增长。为了满足这一需求&#xff0c;我们凭借多年的技术积累和经验&#xff0c;开发出了这款开源万能DIY预约小程序源码系统。该系统的推出旨在帮助开发者快速构建功能丰富、符合用户需求的预约小程序&am…

四、IDEA创建项目时,Maven Archetype模板工程说明

什么是Maven Archetype Archetype是一个Maven项目的模板工具包&#xff0c;它定义了一类项目的基本架构。Archetype为开发人员提供了创建Maven项目的模板&#xff0c;同时它也可以根据已有的Maven项目生成参数化的模板。 官方文档&#xff1a;https://maven.apache.org/archet…

fastjson和jackson序列化的使用案例

简单记录一下一个fastjson框架和jackson进行序列化的使用案例&#xff1a; 原json字符串&#xff1a; “{“lockCount”:”{1:790,113:1,2:0,211:0,101:1328,118:8,137:0,301:0,302:0}“,“inventoryCount”:”{1:25062,113:2,2:10000,211:2,101:11034,118:9,137:40,301:903914…

【一起来学kubernetes】7、k8s中的ingress详解

引言配置示例负载均衡的实现负载均衡策略实现模式实现方案Nginx类型Ingress实现Treafik类型Ingress实现HAProxy类型ingress实现Istio类型ingress实现APISIX类型ingress实现 更多 引言 Ingress是Kubernetes集群中的一种资源类型&#xff0c;用于实现用域名的方式访问Kubernetes…

FreeRTOS深入教程(软件定时器源码分析)

文章目录 前言一、软件定时器结构体二、软件定时器的工作机制三、创建软件定时器四、启动软件定时器五、软件定时器如何知道什么时候被调用总结 前言 除了有硬件定时器&#xff0c;还有软件定时器&#xff0c;那么这篇文章将带大家学习一下软件定时器是如何工作的&#xff0c;…

『Linux升级路』基础开发工具——make/Makefile

&#x1f525;博客主页&#xff1a;小王又困了 &#x1f4da;系列专栏&#xff1a;Linux &#x1f31f;人之为学&#xff0c;不日近则日退 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 目录 一、认识make/Makefile &#x1f4d2;1.1make/Makefile的优点 &#x1f4d2;…

NJU操作系统公开课笔记(2)

上期目录&#xff1a; NJU操作系统公开课笔记&#xff08;1&#xff09;https://blog.csdn.net/jsl123x/article/details/134431343?spm1001.2014.3001.5501 目录 一.处理器与寄存器 二.中断 三.中断系统 四.进程 五.线程与多线程技术概述 六.处理器调度算法 一.处理器…

Couldn‘t agree a key exchange algorithm(available:curve25519-sha256,curve25519-sha256@libssh.org解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

终于等到你!常用的组织架构图模板,高清图片一键导出

组织架构图是一种用来展示一个组织内部人员和职责关系的图表。通过组织架构图&#xff0c;我们可以清晰地了解一个组织的层级架构和各个部门之间的关系。在本文中&#xff0c;我们将向大家推荐8个常用的组织架构图模板&#xff0c;帮助你快速制作出专业的组织架构图。 1. 市场营…

java开发必备的Vue知识点和技能

vue介绍 什么是Vue&#xff1f;vue就是一款用于构建用户界面的渐进式的JavaScript框架。&#xff08;官方&#xff1a;https://cn.vuejs.org/&#xff09; 框架&#xff1a;就是一套完整的项目解决方案&#xff0c;用于快速构建项目。 优点&#xff1a;大大提升前端项目的开…

基于C#实现奇偶排序

这篇就从简单一点的一个“奇偶排序”说起吧&#xff0c;不过这个排序还是蛮有意思的&#xff0c;严格来说复杂度是 O(N2)&#xff0c;不过在多核的情况下&#xff0c;可以做到 N2 /(m/2)的效率&#xff0c;这里的 m 就是待排序的个数&#xff0c;当 m100&#xff0c;复杂度为 N…

牛客 算法题 【HJ102 字符统计】 golang实现

题目 HJ102 字符统计 golang代码实现 package mainimport ("bufio""fmt""os""sort" )func main() {// str_arry :make([]string, 0)str_map : make(map[rune]int)result_map : make(map[int][]string)scanner : bufio.NewScanner(os…

k8s中安装consul集群

一、准备知识 headless services一般结合StatefulSet来部署有状态的应用&#xff0c;比如kafka集群&#xff0c;mysql集群&#xff0c;zk集群等&#xff0c;也包括本文要部署的consul集群。 0、consul集群 consul集群的分布式协议算法采用的是raft协议&#xff0c;这意味着必…

2024重庆大学计算机考研分析

24计算机考研|上岸指南 重庆大学 重庆大学计算机考研招生学院是计算机学院和大数据与软件学院。目前均已出拟录取名单。 重庆大学计算机学院是我国高校最早开展计算机研究的基地之一&#xff0c;1978年和1986年获西南地区首个硕士和博士点&#xff0c;1998年成立计算机学院&a…