Android之高级UI

系统ViewGroup原理解析
常见的布局容器: FrameLayout, LinearLayout,RelativeLayoout,GridLayout
后起之秀:ConstraintLayout,CoordinateLayout

Linearlayout

@Override
    protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
        if (mOrientation == VERTICAL) {
            measureVertical(widthMeasureSpec, heightMeasureSpec);
        } else {
            measureHorizontal(widthMeasureSpec, heightMeasureSpec);
        }
    }

onMeasure(int widthMeasureSpec, int heightMeasureSpec) 源码如上所示,通过 mOrientation 分别处理垂直和水平两个方向的测量,其中的 mOrientation 变量则是我们在 xml 布局文件中通过 android:orientation=“vertical” 或者直接通过 setOrientation(@OrientationMode int orientation) 方法设置的 LinearLayout 文件方向变量

我们仅分析垂直方向的测量方法,也就是 measureVertical(int widthMeasureSpec, int heightMeasureSpec)(水平方向的测量方法 measureHorizontal(int widthMeasureSpec, int heightMeasureSpec) 是类似的原理,有兴趣的朋友可以自己分析)

初始化变量
需要初始化一些类变量 & 声明一些重要的局部变量

void measureVertical(int widthMeasureSpec, int heightMeasureSpec) {
//第一阶段,主要是一些变量的初始化
        mTotalLength = 0;// 所有 childView 的高度和 + 本身的 padding,注意:它和 LinearLayout 本身的高度是不同的
        int maxWidth = 0;// 所有 childView 中宽度的最大值
        int childState = 0;
        int alternativeMaxWidth = 0;// 所有 layout_weight <= 0 的 childView 中宽度的最大值
        int weightedMaxWidth = 0;// 所有 layout_weight >0 的 childView 中宽度的最大值
        boolean allFillParent = true;
        float totalWeight = 0;// 所有 childView 的 weight 之和

        final int count = getVirtualChildCount();

        final int widthMode = MeasureSpec.getMode(widthMeasureSpec);
        final int heightMode = MeasureSpec.getMode(heightMeasureSpec);

        boolean matchWidth = false;
        boolean skippedMeasure = false;

        final int baselineChildIndex = mBaselineAlignedChildIndex;
        final boolean useLargestChild = mUseLargestChild;

        int largestChildHeight = Integer.MIN_VALUE;
        int consumedExcessSpace = 0;

        int nonSkippedChildCount = 0;

第一次测量
在测量第一阶段会计算那些没有设置 weight 的 childView 的高度、计算 mTotleLength,并且计算三个宽度相关的变量的值

void measureVertical(int widthMeasureSpec, int heightMeasureSpec) {
//第二阶段,第一次测量,接上面代码
// See how tall everyone is. Also remember max width.
//第一遍循环,看看每个childview的高度,并且记录最大宽度
        for (int i = 0; i < count; ++i) {//一层for循环
            final View child = getVirtualChildAt(i);//获取到每一个childview
            if (child == null) {
                mTotalLength += measureNullChild(i);
                continue;
            }

            if (child.getVisibility() == View.GONE) {
               i += getChildrenSkipCount(child, i);
               continue;
            }

            nonSkippedChildCount++;
            if (hasDividerBeforeChildAt(i)) {
                mTotalLength += mDividerHeight;
            }

            final LayoutParams lp = (LayoutParams) child.getLayoutParams();

            totalWeight += lp.weight;//计算总权重

            final boolean useExcessSpace = lp.height == 0 && lp.weight > 0;//使用了权重才会满足
            
            // 我们都知道,测量模式有三种:
            // * UNSPECIFIED:父控件对子控件无约束
            // * Exactly:父控件对子控件强约束,子控件永远在父控件边界内,越界则裁剪。如果要记忆的话,可以记忆为有对应的具体数值或者是Match_parent
            // * AT_Most:子控件为wrap_content的时候,测量值为AT
            if (heightMode == MeasureSpec.EXACTLY && useExcessSpace) {//确切高度,且height=0 权重>0
                // Optimization: don't bother measuring children who are only
                // laid out using excess space. These views will get measured
                // later if we have space to distribute.
                //先跳过测量模式为EXACTLY并且需要权重计算的childview         
                // 在后面第三个 for 循环重新计算此 childView 大小
                final int totalLength = mTotalLength;
                mTotalLength = Math.max(totalLength, totalLength + lp.topMargin + lp.bottomMargin);
                skippedMeasure = true;//后面跳过Measure
            } else {//高度不是确定可能是AT_MOST/UNSPECIFIED
                if (useExcessSpace) {
                    // The heightMode is either UNSPECIFIED or AT_MOST, and
                    // this child is only laid out using excess space. Measure
                    // using WRAP_CONTENT so that we can find out the view's
                    // optimal height. We'll restore the original height of 0
                    // after measurement.
                    //把使用权重的childview的高度设置为wrap_content
                    lp.height = LayoutParams.WRAP_CONTENT;
                }

                // Determine how big this child would like to be. If this or
                // previous children have given a weight, then we allow it to
                // use all available space (and we will shrink things later
                // if needed).
                //这是非常重要的一个方法,将会决定每个 childView 的大小
                //如果此 childView 及在此 childView 之前的 childView 中使用了 weight 属性,
                // 我们允许此 childView 使用所有的空间(后续如果需要,再做调整)
                final int usedHeight = totalWeight == 0 ? mTotalLength : 0;
                //调用viewgroup中方法测量子view
                measureChildBeforeLayout(child, i, widthMeasureSpec, 0,
                        heightMeasureSpec, usedHeight);

               // 得到测量之后的 childView 的 childHeight
                final int childHeight = child.getMeasuredHeight();
                if (useExcessSpace) {
                    // Restore the original height and record how much space
                    // we've allocated to excess-only children so that we can
                    // match the behavior of EXACTLY measurement.
                    lp.height = 0;
                    consumedExcessSpace += childHeight;
                }

                 // 将此 childView 的 childHeight 加入到 mTotalLength 中
                // 并加上 childView 的 topMargin 和 bottomMargin 
                // getNextLocationOffset 方法返回 0,方便以后扩展使用
                final int totalLength = mTotalLength;
                mTotalLength = Math.max(totalLength, totalLength + childHeight + lp.topMargin +
                       lp.bottomMargin + getNextLocationOffset(child));

                if (useLargestChild) {
                    largestChildHeight = Math.max(childHeight, largestChildHeight);//记录最大子view高度
                }
            }

            // 下面两个 if 判断都和 `android:baselineAlignedChildIndex` 属性有关,这里不展开分析
            /**
             * If applicable, compute the additional offset to the child's baseline
             * we'll need later when asked {@link #getBaseline}.
             */
            if ((baselineChildIndex >= 0) && (baselineChildIndex == i + 1)) {
               mBaselineChildTop = mTotalLength;
            }

            // if we are trying to use a child index for our baseline, the above
            // book keeping only works if there are no children above it with
            // weight.  fail fast to aid the developer.
            if (i < baselineChildIndex && lp.weight > 0) {
                throw new RuntimeException("A child of LinearLayout with index "
                        + "less than mBaselineAlignedChildIndex has weight > 0, which "
                        + "won't work.  Either remove the weight, or don't set "
                        + "mBaselineAlignedChildIndex.");
            }

            boolean matchWidthLocally = false;//该子view是否需要测量宽度
            
            // 所有 widthMode 是 `MeasureSpec.EXACTLY`,不会进入此 if 判断 
            if (widthMode != MeasureSpec.EXACTLY && lp.width == LayoutParams.MATCH_PARENT) {
                // The width of the linear layout will scale, and at least one
                // child said it wanted to match our width. Set a flag
                // indicating that we need to remeasure at least that view when
                // we know our width.
                // 当父类(LinearLayout)不是match_parent或者精确值的时候,但子控件却是一个match_parent
               // 那么matchWidthLocally和matchWidth置为true
               // 意味着这个控件将会占据父类(水平方向)的所有空间
                matchWidth = true;
                matchWidthLocally = true;
            }

            // 计算三个和宽度相关的变量值
            final int margin = lp.leftMargin + lp.rightMargin;
            final int measuredWidth = child.getMeasuredWidth() + margin;
            maxWidth = Math.max(maxWidth, measuredWidth);
            childState = combineMeasuredStates(childState, child.getMeasuredState());//获取子viewmeasure后的state状态

            allFillParent = allFillParent && lp.width == LayoutParams.MATCH_PARENT;
            if (lp.weight > 0) {
            //需要计算权重的
                /*
                 * Widths of weighted Views are bogus if we end up
                 * remeasuring, so keep them separate.
                 * alternative 可供选择的
                 */
                weightedMaxWidth = Math.max(weightedMaxWidth,
                        matchWidthLocally ? margin : measuredWidth);
            } else {
            //如果不需要计算权重走这里
                alternativeMaxWidth = Math.max(alternativeMaxWidth,
                        matchWidthLocally ? margin : measuredWidth);
            }

            i += getChildrenSkipCount(child, i);
        }//for循环结束

       // 如果存在没有跳过的 childView 并且需要绘制 end divider 则需要加上 end 位置的 divider 的高度
        if (nonSkippedChildCount > 0 && hasDividerBeforeChildAt(count)) {
            mTotalLength += mDividerHeight;
        }

measureChildBeforeLayout()
在此方法中将会计算每个 childView 的大小,调用 ViewGroup 的 measureChildWithMargins() 方法计算每个 childView 的大小,在测量垂直方向的 childView 时,有一个非常重要的参数需要注意,即:heightUsed,根据英文注释,heightUsed 是指在垂直方向,已经被 parentView 或者 parentView 的其他 childView 使用了的空间

void measureChildBeforeLayout(View child, int childIndex,
            int widthMeasureSpec, int totalWidth, int heightMeasureSpec,
            int totalHeight) {
        measureChildWithMargins(child, widthMeasureSpec, totalWidth,
                heightMeasureSpec, totalHeight);
    }

第二次测量
如果进入这个 if 条件,会进行第二次的 for 循环遍历 childView,重新计算 mTotalLength

void measureVertical(int widthMeasureSpec, int heightMeasureSpec) {
//接上面代码
if (useLargestChild &&
                (heightMode == MeasureSpec.AT_MOST || heightMode == MeasureSpec.UNSPECIFIED)) {
            mTotalLength = 0;

            //重新计算总高度:每个非gone的view的高度都按 上次循环记录的最大子view的高度计算,再加上margin
            for (int i = 0; i < count; ++i) {
                final View child = getVirtualChildAt(i);
                if (child == null) {
                    mTotalLength += measureNullChild(i);
                    continue;
                }

                if (child.getVisibility() == GONE) {
                    i += getChildrenSkipCount(child, i);
                    continue;
                }

                final LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams)
                        child.getLayoutParams();
                // Account for negative margins
                final int totalLength = mTotalLength;
                mTotalLength = Math.max(totalLength, totalLength + largestChildHeight +
                        lp.topMargin + lp.bottomMargin + getNextLocationOffset(child));
            }
        }

测量第三阶段
针对设置了 android:layout_weight 属性的布局,重新计算 mTotalLength

void measureVertical(int widthMeasureSpec, int heightMeasureSpec) {
//接上面代码
        // Add in our padding
        mTotalLength += mPaddingTop + mPaddingBottom;

        int heightSize = mTotalLength;

        // Check against our minimum height
        
        // 通过 getSuggestedMinimumHeight() 得到建议最小高度,并和计算得到的
        // mTotalLength 比较取最大值
        heightSize = Math.max(heightSize, getSuggestedMinimumHeight());

        // Reconcile our calculated size with the heightMeasureSpec
       // 通过 heightMeasureSpec,调整 heightSize 的大小
        int heightSizeAndState = resolveSizeAndState(heightSize, heightMeasureSpec, 0);
        heightSize = heightSizeAndState & MEASURED_SIZE_MASK;
        // Either expand children with weight to take up available space or
        // shrink them if they extend beyond our current bounds. If we skipped
        // measurement on any children, we need to measure them now.
        
        // 重新计算有 weight 属性的 childView 大小,
        // 如果还有可用的空间,则扩展 childView,计算其大小
        // 如果 childView 超出了 LinearLayout 的边界,则收缩 childView
        int remainingExcess = heightSize - mTotalLength
                + (mAllowInconsistentMeasurement ? 0 : consumedExcessSpace);
        if (skippedMeasure
                || ((sRemeasureWeightedChildren || remainingExcess != 0) && totalWeight > 0.0f)) {    
            // 根据 mWeightSum 计算得到 remainingWeightSum,mWeightSum 是通过 
            // `android:weightSum` 属性设置的,totalWeight 是通过第一次 for 循环计算得到的
            float remainingWeightSum = mWeightSum > 0.0f ? mWeightSum : totalWeight;
            // 将 mTotalLength 复位为 0
            mTotalLength = 0;
            // 权重childview的测量,开始真正的第二次 for 循环遍历每一个 childView,重新测量每一个 childView
            for (int i = 0; i < count; ++i) {
                final View child = getVirtualChildAt(i);
                if (child == null || child.getVisibility() == View.GONE) {
                    continue;
                }

                final LayoutParams lp = (LayoutParams) child.getLayoutParams();
                final float childWeight = lp.weight              
               // 如果该 childView 设置了 `weight` 值,则进入 if 语句块
                if (childWeight > 0) {
                    // 这是设置了 weight 的情况下,最重要的一行代码
                    // remainingExcess 剩余高度 * ( childView 的 weight / remainingWeightSum)
                    // share 便是此 childView 通过这个公式计算得到的高度,                               
                    // 并重新计算剩余高度 remainingExcess 和剩余权重总和 remainingWeightSum
                    final int share = (int) (childWeight * remainingExcess / remainingWeightSum);
                    remainingExcess -= share;
                    remainingWeightSum -= childWeight;

                   // 通过下面的 if 条件重新计算,childHeight 是最终 childView 的真正高度
                    final int childHeight;
                    if (mUseLargestChild && heightMode != MeasureSpec.EXACTLY) {
                        childHeight = largestChildHeight;
                    } else if (lp.height == 0 && (!mAllowInconsistentMeasurement
                            || heightMode == MeasureSpec.EXACTLY)) {
                        // This child needs to be laid out from scratch using
                        // only its share of excess space.
                        childHeight = share;
                    } else {
                        // This child had some intrinsic height to which we
                        // need to add its share of excess space.
                        childHeight = child.getMeasuredHeight() + share;
                    }

                    // 计算 childHeightMeasureSpec & childWidthMeasureSpec,并调用 child.measure() 方法
                    final int childHeightMeasureSpec = MeasureSpec.makeMeasureSpec(
                            Math.max(0, childHeight), MeasureSpec.EXACTLY);
                    final int childWidthMeasureSpec = getChildMeasureSpec(widthMeasureSpec,
                            mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin,
                            lp.width);
                    child.measure(childWidthMeasureSpec, childHeightMeasureSpec);

                    // Child may now not fit in vertical dimension.
                    childState = combineMeasuredStates(childState, child.getMeasuredState()
                            & (MEASURED_STATE_MASK>>MEASURED_HEIGHT_STATE_SHIFT));
                }

                final int margin =  lp.leftMargin + lp.rightMargin;
                final int measuredWidth = child.getMeasuredWidth() + margin;
                maxWidth = Math.max(maxWidth, measuredWidth);

                boolean matchWidthLocally = widthMode != MeasureSpec.EXACTLY &&
                        lp.width == LayoutParams.MATCH_PARENT;

                alternativeMaxWidth = Math.max(alternativeMaxWidth,
                        matchWidthLocally ? margin : measuredWidth);

                allFillParent = allFillParent && lp.width == LayoutParams.MATCH_PARENT;

                // 考虑 childView.topMargin & childView.bottomMargin,重新计算 mTotalLength
                final int totalLength = mTotalLength;
                mTotalLength = Math.max(totalLength, totalLength + child.getMeasuredHeight() +
                        lp.topMargin + lp.bottomMargin + getNextLocationOffset(child));
            }

            // Add in our padding
           // 完成 for 循环之后,加入 LinearLayout 本身的 mPaddingTop & mPaddingBottom
            mTotalLength += mPaddingTop + mPaddingBottom;
            // TODO: Should we recompute the heightSpec based on the new total length?
        } else {
            // 重新计算 alternativeMaxWidth
            alternativeMaxWidth = Math.max(alternativeMaxWidth,
                                           weightedMaxWidth);


            // We have no limit, so make all weighted views as tall as the largest child.
            // Children will have already been measured once.
            if (useLargestChild && heightMode != MeasureSpec.EXACTLY) {
                for (int i = 0; i < count; i++) {
                    final View child = getVirtualChildAt(i);
                    if (child == null || child.getVisibility() == View.GONE) {
                        continue;
                    }

                    final LinearLayout.LayoutParams lp =
                            (LinearLayout.LayoutParams) child.getLayoutParams();

                    float childExtra = lp.weight;
                    if (childExtra > 0) {
                        child.measure(
                                MeasureSpec.makeMeasureSpec(child.getMeasuredWidth(),
                                        MeasureSpec.EXACTLY),
                                MeasureSpec.makeMeasureSpec(largestChildHeight,
                                        MeasureSpec.EXACTLY));
                    }
                }
            }
        }

        if (!allFillParent && widthMode != MeasureSpec.EXACTLY) {
            maxWidth = alternativeMaxWidth;
        }

        // 调整 width 大小
        maxWidth += mPaddingLeft + mPaddingRight;

        // Check against our minimum width
        maxWidth = Math.max(maxWidth, getSuggestedMinimumWidth());

        // 调用 setMeasuredDimension() 设置 LinearLayout 的大小
        setMeasuredDimension(resolveSizeAndState(maxWidth, widthMeasureSpec, childState),
                heightSizeAndState);

        //最后,设置LinearLayout的size大小和状态,如果LinearLayout有设置width为match_parent的话,将会调用forceUniformWidth再测量一次所有的subchild,这里主要是测量subchild的width大小
        if (matchWidth) {
            forceUniformWidth(count, heightMeasureSpec);
        }

假如一共有3个subchild且都有设置weight ,分别为3、2、1,我们假设剩余的space为120,则第一个view的大小为120 * 3/(3+2+1)=60,第二个view的大小为(120-60)*2/(2+1)=40,第3个view的大小为(60-40)*1/1 = 20

resolveSizeAndState

public static int resolveSizeAndState(int size, int measureSpec, int childMeasuredState) {
        final int specMode = MeasureSpec.getMode(measureSpec);
        final int specSize = MeasureSpec.getSize(measureSpec);
        final int result;
        switch (specMode) {
            case MeasureSpec.AT_MOST:
                if (specSize < size) {
                    result = specSize | MEASURED_STATE_TOO_SMALL;
                } else {
                    result = size;
                }
                break;
            case MeasureSpec.EXACTLY:
                result = specSize;
                break;
            case MeasureSpec.UNSPECIFIED:
            default:
                result = size;
        }
        return result | (childMeasuredState & MEASURED_STATE_MASK);
    }

总结
1.LinearLayout针对设置weight与不设置weight的情况分别处理
2.在 LinearLayout 中总共有 3 个 for 循环,分别处理不同的流程

  • 第一个 for 循环,只会在不使用 weight 属性时进入,并有可能会测量每个 childView 的大小
  • 第二个 for 循环,在使用 android:measureWithLargestChild 时才会进入,并且即使进入也不会调用 childView 的测量方法,只会更新 mTotalLength 变量
  • 第三个 for 循环,只会在使用 weight 属性时进入,并测量每个 childView 的大小

自定义View总结

自定义UI基础

Android的坐标系
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

View的静态坐标方法

在这里插入图片描述

手指触摸屏幕时MotionEvent
在这里插入图片描述

获取宽高
在这里插入图片描述

获取view位置
在这里插入图片描述

View滑动相关坐标系
View的scrollTo()和scrollBy()是用于滑动View中的内容,而不是改变View的位置;改变View在屏幕中的位置可以使用offsetLeftAndRight()和offsetTopAndBottom()方法,他会导致getLeft()等值改变

在这里插入图片描述
在这里插入图片描述

自定义view分类

  • 自定义View的基本方法
    自定义View的最基本的三个方法分别是: onMeasure()、onLayout()、onDraw();
    View在Activity中显示出来,要经历测量、布局和绘制三个步骤,分别对应三个动作:measure、layout和draw。

测量:onMeasure()决定View的大小;
布局:onLayout()决定View在ViewGroup中的位置;
绘制:onDraw()决定绘制这个View。

  • 自定义控件分类

自定义View: 只需要重写onMeasure()和onDraw()
自定义ViewGroup: 则只需要重写onMeasure()和onLayout()

  • 视图View主要分为两类

在这里插入图片描述

View类简介

View类是Android中各种组件的基类,如View是ViewGroup基类
View表现为显示在屏幕上的各种视图
Android中的UI组件都由View、ViewGroup组成。

View的构造函数:共有4个

// 如果View是在Java代码里面new的,则调用第一个构造函数
   public CustomView(Context context) {
          super(context);
      }
  
  // 如果View是在.xml里声明的,则调用第二个构造函数
  // 自定义属性是从AttributeSet参数传进来的
      public  CustomView(Context context, AttributeSet attrs) {
          super(context, attrs);
      }
  
  // 不会自动调用
  // 一般是在第二个构造函数里主动调用
  // 如View有style属性时
      public  CustomView(Context context, AttributeSet attrs, int defStyleAttr) {
          super(context, attrs, defStyleAttr);
      }
  
      //API21之后才使用
      // 不会自动调用
      // 一般是在第二个构造函数里主动调用
      // 如View有style属性时
      public  CustomView(Context context, AttributeSet attrs, int defStyleAttr, int defStyleRes) {
          super(context, attrs, defStyleAttr, defStyleRes);
      }
  • AttributeSet与自定义属性
     系统自带的View可以在xml中配置属性,对于写的好的自定义View同样可以在xml中配置属性,为了使自定义的View的属性可以在xml中配置,需要以下4个步骤:

通过为自定义View添加属性
在xml中为相应的属性声明属性值
在运行时(一般为构造函数)获取属性值
将获取到的属性值应用到View

  • View视图结构

1 PhoneWindow是Android系统中最基本的窗口系统,继承自Windows类,负责管理界面显示以及事件响应。它是Activity与View系统交互的接口
2 DecorView是PhoneWindow中的起始节点View,继承于View类,作为整个视图容器来使用。用于设置窗口属性。它本质上是一个FrameLayout
3 ViewRoot在Activtiy启动时创建,负责管理、布局、渲染窗口UI等等
在这里插入图片描述

上图是 Activity 的结构。我们先进行大致的描述,然后在进入源码体会这一过程。

我们可以清晰的知道一个 Activity 会对应着有一个 Window,而 Window 的唯一实现类为 PhoneWindow,PhoneWindow 的初始化是在 Activity 的 attach 方法中,我们前面也有提到 attach 方法。

在往下一层是一个 DecorView,被 PhoneWindow 持有着,DecorView 的初始化在 setContentView 中,这个我们待会会进行详细分析。DecorView 是我们的顶级View,我们设置的布局只是其子View。

DecorView 是一个 FrameLayout。但在 setContentView 中,会给他加入一个线性的布局(LinearLayout)。该线性布局的子View 则一般由 TitleBar 和 ContentView 进行组成。TitleBar 我们可以通过 requestWindowFeature(Window.FEATURE_NO_TITLE); 进行去除,而 ContentView 则是来装载我们设置的布局文件的 ViewGroup 了

对于多View的视图,结构是树形结构:最顶层是ViewGroup,ViewGroup下可能有多个ViewGroup或View,如下图:
在这里插入图片描述

一定要记住:无论是measure过程、layout过程还是draw过程,永远都是从View树的根节点开始测量或计算(即从树的顶端开始),一层一层、一个分支一个分支地进行(即树形递归),最终计算整个View树中各个View,最终确定整个View树的相关属性

view的生命周期
在这里插入图片描述

在这里插入图片描述

绘制流程从何而起
我们一说到绘制流程,就会想到或是听过onMeasure、onLayout、onDraw这三个方法,但是有没想过为什么我们开启一个App或是点开一个Activity,就会触发这一系列流程呢?想知道绘制流程从何而起,我们就有必要先解释 App启动流程 和 Activity的启动流程。我们都知道

ActivityThread 的 main 是一个App的入口。我们来到 main 方法看看他做了什么启动操作。ActivityThread 的 main方法是由 ZygoteInit 类中最终通过 RuntimeInit类的invokeStaticMain 方法进行反射调用

在这里插入图片描述

在这里插入图片描述

measure流程
在这里插入图片描述

layout流程
在这里插入图片描述

draw流程
在这里插入图片描述

刷新
在这里插入图片描述

测量是如何进行的

  • 测量遍历在 measure(int, int) 中实现,是 View 树的自上而下遍历。在递归过程中,每个 View
    都会将维度规范下推到布局树。在测量遍历结束时,每个 View 均存储了其测量值。第二次遍历发生在 layout(int, int,
    int, int) 中,也是自上而下遍历。在此次遍历中,每个父级负责使用测量遍历中计算的尺寸来定位其所有的子级。当返回 View 对象的
    measure() 方法时,必须设置其 getMeasuredWidth() 和 getMeasuredHeight() 值,以及该
    View 对象的所有子级的值。View 对象的测量宽度值和测量高度值必须遵守 View
    对象的父级所施加的限制。这就保证了在测量遍历结束时,所有父级都会接受其子级的所有测量值。父级 View 可以对其子级多次调用
    measure()。例如,父级可以使用未指定的维度测量每个子级一次,以确定它们希望的大小;然后,如果所有子级不受限制的尺寸的总和过大或过小,则再次使用实际的数字对它们调用
    measure()(即,如果子级未就各自获得多少空间达成一致,则父级将会介入并针对第二次遍历设置规则)。

  • 测量遍历使用两个类来传达维度。View 对象使用 ViewGroup.LayoutParams 类来告知父级它们想要如何测量和定位。基本的
    ViewGroup.LayoutParams 类仅描述了 View 希望的宽度和高度。针对每个维度,它可以指定以下某一项:

  • 一个确切的数字

  • MATCH_PARENT,该参数意味着 View 想要和它的父级一样大(负填充)

  • WRAP_CONTENT,该参数意味着 View 想要足够大,以包含其内容(正填充)。
    有适用于 ViewGroup 的不同子类的 ViewGroup.LayoutParams 子类。例如,RelativeLayout 有自己的 ViewGroup.LayoutParams 子类,其中包括使子级 View 对象水平和垂直居中的功能。

MeasureSpec 对象用于在树中将要求从父级下推到子级。MeasureSpec 可以为以下三种模式之一:

  • UNSPECIFIED:父级使用该模式来确定子级 View 所需的维度。例如,LinearLayout 可能会对其高度设置为 UNSPECIFIED 和宽度设置为 EXACTLY 240 的子级调用 measure(),从而确定宽度为 240 像素的子级 View 所需的高度。
  • EXACTLY:父级使用该模式来强制子级使用某个确切尺寸。子级必须使用该尺寸,并保证其所有的子项都能放入该尺寸。
  • AT MOST:父级使用该模式来强制规定子级的最大尺寸。子级必须保证它及其所有的子项都能放入该尺寸
    在这里插入图片描述
// ViewGroup 类
public static int getChildMeasureSpec(int spec, int padding, int childDimension) {
    int specMode = MeasureSpec.getMode(spec);
    int specSize = MeasureSpec.getSize(spec);

    int size = Math.max(0, specSize - padding);

    int resultSize = 0;
    int resultMode = 0;

    switch (specMode) {
        // 父视图为确定的大小的模式
        case MeasureSpec.EXACTLY:
            /**
             * 根据子视图的大小,进行不同模式的组合:
             * 1、childDimension 大于 0,说明子视图设置了具体的大小
             * 2、childDimension 为 {@link LayoutParams.MATCH_PARENT},说明大小和其父视图一样大
             * 3、childDimension 为 {@link LayoutParams.WRAP_CONTENT},说明子视图想为其自己的大小,但
             * 不能超过其父视图的大小。
             */
            if (childDimension >= 0) {
                resultSize = childDimension;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.MATCH_PARENT) {
                // Child wants to be our size. So be it.
                resultSize = size;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                // Child wants to determine its own size. It can't be
                // bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            }
            break;
        // 父视图已经有一个最大尺寸限制
        case MeasureSpec.AT_MOST:
            /**
             * 根据子视图的大小,进行不同模式的组合:
             * 1、childDimension 大于 0,说明子视图设置了具体的大小
             * 2、childDimension 为 {@link LayoutParams.MATCH_PARENT},
             * -----说明大小和其父视图一样大,但是此时的父视图还不能确定其大小,所以只能让子视图不超过自己
             * 3、childDimension 为 {@link LayoutParams.WRAP_CONTENT},
             * -----说明子视图想为其自己的大小,但不能超过其父视图的大小。
             */
            if (childDimension >= 0) {
                // Child wants a specific size... so be it
                resultSize = childDimension;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.MATCH_PARENT) {
                // Child wants to be our size, but our size is not fixed.
                // Constrain child to not be bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                // Child wants to determine its own size. It can't be
                // bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            }
            break;
        case MeasureSpec.UNSPECIFIED:
            if (childDimension >= 0) {
                // Child wants a specific size... let him have it
                resultSize = childDimension;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.MATCH_PARENT) {
                // Child wants to be our size... find out how big it should
                // be
                resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
                resultMode = MeasureSpec.UNSPECIFIED;
            } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                // Child wants to determine its own size.... find out how
                // big it should be
                resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
                resultMode = MeasureSpec.UNSPECIFIED;
            }
            break;
    }
    return MeasureSpec.makeMeasureSpec(resultSize, resultMode);}

在这里插入图片描述

针对上表,这里再做一下具体的说明

  • 对于应用层 View ,其 MeasureSpec 由父容器的 MeasureSpec 和自身的 LayoutParams 来共同决定
  • 对于不同的父容器和view本身不同的LayoutParams,view就可以有多种MeasureSpec。
  • 当view采用固定宽高的时候,不管父容器的MeasureSpec是什么,view的MeasureSpec都是精确模式并且其大小遵循Layoutparams中的大小;
  • 当view的宽高是match_parent时,这个时候如果父容器的模式是精准模式,那么view也是精准模式并且其大小是父容器的剩余空间,如果父容器是最大模式,那么view也是最大模式并且其大小不会超过父容器的剩余空间;
  • 当view的宽高是wrap_content时,不管父容器的模式是精准还是最大化,view的模式总是最大化并且大小不能超过父容器的剩余空间。
  • Unspecified模式,这个模式主要用于系统内部多次measure的情况下,一般来说,我们不需要关注此模式(这里注意自定义View放到ScrollView的情况 需要处理)。
    onMeasure()方法中常用的方法
  • getChildCount():获取子View的数量;
  • getChildAt(i):获取第i个子控件;
  • subView.getLayoutParams().width/height:设置或获取子控件的宽或高;
  • measureChild(child, widthMeasureSpec, heightMeasureSpec):测量子View的宽高;
  • child.getMeasuredHeight/width():执行完measureChild()方法后就可以通过这种方式获取子View的宽高值;
  • getPaddingLeft/Right/Top/Bottom():获取控件的四周内边距;
  • setMeasuredDimension(width, height):重新设置控件的宽高

自定义View需要注意的地方

  • 让View支持wrap_conent
  • 让View支持padding
  • 尽量避免使用Handler,一般都可以用View自带的post方法代替
  • 在onDeatchFromWindow时,停止View的动画或线程(如果有的话)
  • 如果存在嵌套滑动,处理好滑动冲突
    自定义View如何测量
    在这里插入图片描述

自定义绘制
1.Canvas常用方法

  • 绘制图形(点、线、矩形、椭圆、圆等)
  • 绘制文本(文本的居中问题,需要Paint知识)
  • 画布的基本变化(平移、缩放、旋转、倾斜)
  • 画布的裁剪
  • 画布的保存

在这里插入图片描述

2.Paint类主要用于设置绘制风格:包括画笔的颜色画笔触笔粗细、填充风格及文字的特征

  • Paint常用方法

  • 颜色

  • 类型(填充、描边)

  • 字体大小

  • 宽度

  • 对齐方式

  • 文字位置属性测量

  • 文字宽度测量
    在这里插入图片描述
    在这里插入图片描述

  • Path常用方法

  • 添加路径

  • 移动起点

  • 贝塞尔(二阶、三阶)

  • 逻辑运算

  • 重置路径

  • PathEffect

  • Matrix

  • PathMeasure:来操作和获取有关 Path 对象信息的工具类。

  • PorterDuffXfermode
    在这里插入图片描述

  • Matrix
    在这里插入图片描述

  • 平移矩阵
    在这里插入图片描述

  • 缩放矩阵
    在这里插入图片描述

  • 旋转矩阵
    在这里插入图片描述

  • ColorMatrix

在这里插入图片描述

4 动画

  • ObjectAnimator
  • ValueAnimator
  • AnimatorSet
  • 差值器
  • 估值器

事件分发

  • 事件序列 DOWN -> … MOVE … -> UP/CANCEL
    在这里插入图片描述

  • 父容器调用哪个方法可以拦截子View的事件?为什么?
    - 调用onInterceptTouchEvent()并返回true。因为该方法返回true后,会导致变量 intercepted =
    true,从而导致不会走后面分发事件的代码。

  • 子View调用哪个方法可以请求父容器不拦截自己?为什么?
    - requestDisallowInterceptTouchEvent(true)。因为 onInterceptTouchEvent()
    方法的执行条件是disallowIntercept = false,而子View调用requestDisallowInterceptTouchEvent(true)方法可以导致disallowIntercept
    = true,从而onInterceptTouchEvent方法不会执行,父容器就不能拦截自己了。

  • 父容器一旦在down事件拦截子View,就算子View调用了requestDisallowInterceptTouchEvent方法还是拿不到事件,为什么?

    • 因为down事件时,父容器会调用resetTouchState,导致disallowIntercept始终为false,即onInterceptTouchEvent方法始终会执行。
  • 按钮的onClick方法是在哪个事件响应的?

    • A.MotionEvent.ACTION_UP
    • B.MotionEvent.ACTION_DOWN
    • C.MotionEvent.ACTION_MOVE
  • 解决事件冲突的主要方法有哪些?

    • 内部拦截法、外部拦截法

三角函数
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

最后给大家带来一个好玩的公式:

e i π + 1 = 0 e ^{iπ}+1=0 e+1=0

  • e 是自然对数的底数。
  • i 是虚数单位。
  • π是圆周率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/190544.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

OpenGL 自学总结

前言&#xff1a; 本人是工作后才接触到的OpenGL&#xff0c;大学找工作的时候其实比较着急&#xff0c;就想着尽快有个着落。工作后才发现自己的兴趣点。同时也能感觉到自己当前的工作有一点温水煮青蛙的意思&#xff0c;很担心自己往后能力跟不上年龄的增长。因此想在工作之余…

【C++】类型转换 ② ( C++ 静态类型转换 static_cast | C 语言隐式转换弊端 | 代码示例 )

文章目录 一、静态类型转换 static_cast1、C 静态类型转换 static_cast2、C 语言隐式转换弊端3、代码示例 在之前写过一篇 C 类型转换的博客 【C 语言】类型转换 ( 转换操作符 | const_cast | static_cast | dynamic_cast | reinterpret_cast | 字符串转换 ) , 简单介绍了 C 类…

Linux系统的文件权限

Linux系统权限的相关概念与理解 (xshell下进行演示) 文章目录&#xff1a; 1:linux系统下两种用户 超级用户(root)与普通用户(非root)的理解root与非root用户之间切换的指令非root用户之间进行切换的指令操作 2:linux文件权限管理 文件访问者的介绍文件的类型与文件的访问权…

openpnp - 自动换刀设置 - 使用克隆功能降低风险

文章目录 openpnp - 自动换刀设置 - 使用克隆功能降低风险概述笔记需要注意的地方将一个做好的吸嘴作为这排其他吸嘴的模板END openpnp - 自动换刀设置 - 使用克隆功能降低风险 概述 自动换刀设置时, 很危险, 动不动就撞刀. 如履薄冰啊:( 看到openpnp在自动换刀时, 有个克隆功…

【Vue】记事本

上一篇&#xff1a;Vue的指令 https://blog.csdn.net/m0_67930426/article/details/134599378?spm1001.2014.3001.5501 本篇所需指令&#xff1a; v- for v-model v-on v-show 目录 删除功能 添加功能 统计功能 清空功能 v-show 删除功能 <!DOCTYPE html> …

系列十九、Spring实例化bean的方式

一、概述 所谓实例化bean&#xff0c;大白话讲就是Spring如何把这一个个的普通的Java对象创建为Spring bean的。 二、方式 Spring中实例化bean常用的有以下四种&#xff0c;即&#xff1a; ① 构造器方式&#xff1b; ② 静态工厂方式&#xff1b; ③ 实例工厂方式&#xff1b;…

SQL JOIN 子句:合并多个表中相关行的完整指南

SQL JOIN JOIN子句用于基于它们之间的相关列合并来自两个或更多表的行。 让我们看一下“Orders”表的一部分选择&#xff1a; OrderIDCustomerIDOrderDate1030821996-09-1810309371996-09-1910310771996-09-20 然后&#xff0c;看一下“Customers”表的一部分选择&#xff…

帮管客CRM 文件上传漏洞复现

0x01 产品简介 帮管客CRM是一款集客户档案、销售记录、业务往来等功能于一体的客户管理系统。帮管客CRM客户管理系统&#xff0c;客户管理&#xff0c;从未如此简单&#xff0c;一个平台满足企业全方位的销售跟进、智能化服务管理、高效的沟通协同、图表化数据分析帮管客颠覆传…

cuda magma 构建 使用cmake构建的步骤记录

这不是群论代数软件&#xff0c;而是cuda 矩阵计算软件 1. 生成其他精度的源代码 1.1 复制编辑 make.inc cp make.inc-examples/make.inc.openblas ./make.inc 并修改其中的定义&#xff1a; OPENBLASDIR ? /opt/OpenBLAS 这需要实现安装openblas到此处。文件夹解构&…

JAVA小游戏简易版王者荣耀

第一步是创建项目 项目名自拟 第二部创建个包名 来规范class 然后是创建类 GameFrame 运行类 package com.sxt; import java.awt.Graphics; import java.awt.Image; import java.awt.Toolkit; import java.awt.event.ActionEvent; import java.awt.event.ActionListener;…

虹科分享 | AR世界揭秘:从二维码的起源到数据识别与位姿技术的奇妙融合!

引言&#xff1a;探索AR的神奇世界&#xff0c;我们将从二维码的诞生谈起。在这个科技的海洋中&#xff0c;二维码是如何帮助AR实现数据获取与位姿识别的呢&#xff1f;让我们一起揭开这层神秘的面纱&#xff01; 一、二维码的由来 二维码是将数据存储在图形中的技术&#xff…

王者荣耀,,,,,

第一步是创建项目 项目名自拟 第二部创建个包名 来规范class 然后是创建类 GameFrame 运行类 package com.sxt; import java.awt.Graphics; import java.awt.Image; import java.awt.Toolkit; import java.awt.event.ActionEvent; import java.awt.event.ActionListener;…

【VSCode】自定义转换大小写快捷键

文章目录 VSCode 是没有可以直接转换字母大小写的快捷键的&#xff0c;但是可以通过设置去定义 点击左下角设置按钮&#xff0c;并选择键盘快捷方式 在快捷方式里面搜索写&#xff0c;就能找到&#xff1a; 选择要设置的快捷键&#xff0c;并点击左侧的号 在键盘上按住你想设置…

mysql高级知识点

一、mysql架构 连接层&#xff1a;负责接收客户端的连接请求&#xff0c;可以进行授权、认证(验证账号密码)。服务层&#xff1a;负责调用sql接口&#xff0c;对sql语法进行解析&#xff0c;对查询进行优化&#xff0c;缓存。引擎层&#xff1a;是真正进行执行sql的地方&#x…

类与对象——(1)初识对象——C++中的string

归纳编程学习的感悟&#xff0c; 记录奋斗路上的点滴&#xff0c; 希望能帮到一样刻苦的你&#xff01; 如有不足欢迎指正&#xff01; 共同学习交流&#xff01; &#x1f30e;欢迎各位→点赞 &#x1f44d; 收藏⭐ 留言​&#x1f4dd; 或许不安或许迷惑&#xff0c;但…

storyBook常见踩坑报错 和 解决

用StoryBook官网的代码&#xff0c;但报错&#xff0c;Unexpected token’<’ 在js文件中// Button.stories.js|jsx import { Button } from ‘./Button’; export default { component: Button, }; /* *&#x1f447; Render functions are a framework specific featur…

Liunx系统使用超详细(一)

目录 一、Liunx系统的认识 二、Liunx和Windows区别 三、Liunx命令提示符介绍 四、Liunx目录结构 一、Liunx系统的认识 Linux系统是一种开源的、类Unix操作系统内核的实现&#xff0c;它基于Unix的设计原理和思想&#xff0c;并在全球范围内广泛应用。以下是对Linux系统的详…

文件的写入和读取操作

题目&#xff1a; 编写一个程序&#xff0c;实现以下功能&#xff1a; 1. 创建一个新的文本文件&#xff0c;并将用户输入的数据写入文件中。 2. 打开已存在的文本文件&#xff0c;并将其中的数据显示在屏幕上。 #include <stdio.h> #include <stdlib.h> void wri…

一文讲明SpringMVC 【爆肝整理一万五千字】

我 | 在这里 &#x1f575;️ 读书 | 长沙 ⭐软件工程 ⭐ 本科 &#x1f3e0; 工作 | 广州 ⭐ Java 全栈开发&#xff08;软件工程师&#xff09; &#x1f383; 爱好 | 研究技术、旅游、阅读、运动、喜欢流行歌曲 ✈️已经旅游的地点 | 新疆-乌鲁木齐、新疆-吐鲁番、广东-广州…

【JVM系列】- 穿插·对象的实例化与直接内存

对象的实例化与直接内存 &#x1f604;生命不息&#xff0c;写作不止 &#x1f525; 继续踏上学习之路&#xff0c;学之分享笔记 &#x1f44a; 总有一天我也能像各位大佬一样 &#x1f31d;分享学习心得&#xff0c;欢迎指正&#xff0c;大家一起学习成长&#xff01; 文章目录…