智能优化算法应用:基于斑点鬣狗算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于斑点鬣狗算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于斑点鬣狗算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.斑点鬣狗算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用斑点鬣狗算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.斑点鬣狗算法

斑点鬣狗算法原理请参考:https://blog.csdn.net/u011835903/article/details/107542352
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

斑点鬣狗算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明斑点鬣狗算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/189790.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

VM虚拟机中Ubuntu14.04安装VM tools后仍不能全屏显示

1、查看Ubuntu所支持的分辨率大小。 在终端处输入: xrandr,回车 2、输入你想设置的分辨率参数。 我设置的为1360x768,大家可以根据自己的具体设备设置。 在终端输入:xrandr -s 1360x768 注意:这里1360后边是字母 x 且…

<JavaEE> Thread线程类 和 Thread的常用方法

目录 一、Thread概述 二、构造方法 三、常用方法 1.1 getId()、getName()、getState()、getPririty() 1.2 start() 1.3 isDaemon()、setDaemon() 1.4 isAlive() 1.5 currentThread() 1.6 Interrupt()、interrupted()、isInterrupted() 1.6.1 方法一:添加共…

S25FL系列FLASH读写的FPGA实现

文章目录 实现思路具体实现子模块实现top模块 测试Something 实现思路 建议读者先对 S25FL-S 系列 FLASH 进行了解,我之前的博文中有详细介绍。 笔者的芯片具体型号为 S25FL256SAGNFI00,存储容量 256Mb,增强高性能 EHPLC,4KB 与 6…

Java中static、final、static final的区别

文章目录 finalstaticstatic final final final可以修饰:属性,方法,类,局部变量(方法中的变量) final修饰的属性的初始化可以在编译期,也可以在运行期,初始化后不能被改变。 final修…

nginx配置文件的简单结构

nginx的配置文件(nginx.conf)整体上可分为三个部分:全局块、events块、http块 区域职责全局块配置和nginx运行相关的全局配置events块配置和网络连接相关的配置http块配置代理、缓存、日志记录、虚拟主机等配置在http块中,可以包含…

python:傅里叶分析,傅里叶变换 FFT

使用python进行傅里叶分析,傅里叶变换 FFT 的一些关键概念的引入: 1.1.离散傅里叶变换(DFT) 离散傅里叶变换(discrete Fourier transform) 傅里叶分析方法是信号分析的最基本方法,傅里叶变换是傅里叶分析的核心&…

摆脱无用代码的负担:TreeShaking 的魔力

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

【教学类-06-12】20231126 (一)如何让加减乘除题目从小到大排序(以1-20之间加法为例,做正序排列用)

结果展示 优化后 优化前 背景需求: 生成列表 单独抽取显示题目排序方法 存在问题: 我希望 00 01 02……这样排序,但是实际上,除了第一个加数会从小到大排序,第二个被加数的第十位数和个位数都会从小到大排序,也就是…

NeoPreference延伸:为SharedPreferences配置项生成配置页面

代码地址:https://github.com/Nagi1225/NeoPreference.git 最初在开发NeoPreference这个SharedPreferences工具的时候,就期望完成三个目标: 代码简洁,新增配置项的时候一行代码(最多两行);读写…

线程的常用方法-wait和notify以及线程的结束方式

再复习一下Java中的线程的状态图 wait和sleep的区别是:wait需要先持有锁(wait需要再synchronized代码块中执行),执行后会让出锁。而sleep不需要先持有锁,执行后也不会释放锁(有锁的话抱着锁睡觉&#xff09…

SpringBoot 环境使用 Redis + AOP + 自定义注解实现接口幂等性

目录 一、前言二、主流实现方案介绍2.1、前端按钮做加载状态限制(必备)2.2、客户端使用唯一标识符2.3、服务端通过检测请求参数进行幂等校验(本文使用) 三、代码实现3.1、POM3.2、application.yml3.3、Redis配置类3.4、自定义注解…

基于Haclon的标签旋转项目案例

项目要求: 图为HALCON附图“25interleaved_exposure_04”,里面为旋转的二维码标签,请将其旋转到水平位置。 项目知识: 在HALCON中进行图像平移和旋转通常有以下步骤: (1)通过hom_mat2d_ident…

jQuery_03 dom对象和jQuery对象的互相转换

dom对象和jQuery对象 dom对象 jQuery对象 在一个文件中同时存在两种对象 dom对象: 通过js中的document对象获取的对象 或者创建的对象 jQuery对象: 通过jQuery中的函数获取的对象。 为什么使用dom或jQuery对象呢? 目的是 要使用dom对象的函数或者属性 以及呢 要…

<JavaEE> 线程的五种创建方法 和 查看线程的两种方式

目录 一、线程的创建方法 1.1 继承 Thread -> 重写 run 方法 1.2 使用匿名内部类 -> 继承 Thread -> 重写 run 方法 1.3 实现 Runnable 接口 -> 重写 run 方法 1.4 使用匿名内部类 -> 实现 Runnable 接口 -> 重写 run 方法 1.5 使用 lambda 表达式 二…

Self Distillation 自蒸馏论文解读

paper:Be Your Own Teacher: Improve the Performance of Convolutional Neural Networks via Self Distillation official implementation: https://github.com/luanyunteng/pytorch-be-your-own-teacher 前言 知识蒸馏作为一种流行的压缩方法&#…

五种多目标优化算法(MOGWO、MOLPB、MOJS、NSGA3、MOPSO)求解微电网多目标优化调度(MATLAB代码)

一、多目标优化算法简介 (1)多目标灰狼优化算法MOGWO 多目标应用:基于多目标灰狼优化算法MOGWO求解微电网多目标优化调度(MATLAB代码)-CSDN博客 (2)多目标学习者行为优化算法MOLPB 多目标学习…

ps5ps4游戏室如何计时?计费系统怎么查看游戏时间以及收费如何管理

ps5ps4游戏室如何计时?计费系统怎么查看游戏时间以及收费如何管理 1、ps5ps4游戏室如何计时? 下图以佳易王计时计费软件V17.9为例说明 在开始计时的时候,只需点 开始计时按钮,那么开台时间和使用的时间长度项目显示在屏幕上&am…

如何判断一个题目用“贪心/动态规划“还是用“BFS/DFS”方法解决

1 总结 1.1 贪心、动态规划和BFS/DFS题解的关系 一般能使用贪心、动态规划解决一个问题时,使用BFS,DFS也能解决这个题,但是反之不能成立。 1.2 2 贪心 -> BFS/DFS 2.1 跳跃游戏1和3的异同 这两道题,“跳跃游戏”&#xf…

靡靡之音 天籁之声 ——Adobe Audition

上一期讲到了和Pr配合使用的字幕插件Arctime Pro的相关介绍。相信还记得的小伙伴应该记得我还提到过一个软件叫做Au。 当人们对字幕需求的逐渐满足,我们便开始追求更高层次的享受,当视觉享受在进步,听觉享受想必也不能被落下! Au即…

Flutter桌面应用开发之毛玻璃效果

目录 效果实现方案依赖库支持平台实现步骤注意事项话题扩展 毛玻璃效果:毛玻璃效果是一种模糊化的视觉效果,常用于图像处理和界面设计中。它可以通过在图像或界面元素上应用高斯模糊来实现。使用毛玻璃效果可以增加图像或界面元素的柔和感,同…