elasticsearc DSL查询文档

文章目录

  • DSL查询文档
    • DSL查询分类
    • 全文检索查询
      • 使用场景
      • 基本语法
      • 示例
    • 精准查询
      • term查询
      • range查询
      • 总结
    • 地理坐标查询
      • 矩形范围查询
      • 附近查询
    • 复合查询
      • 相关性算分
      • 算分函数查询
        • 1)语法说明
        • 2)示例
        • 3)小结
      • 布尔查询
        • 1)语法示例:
        • 2)示例
        • 3)小结
  • 搜索结果处理
    • 排序
      • 普通字段排序
      • 地理坐标排序
    • 分页
      • 基本的分页
      • 深度分页问题
      • 小结
    • 高亮
      • 高亮原理
      • 实现高亮

DSL查询文档

elasticsearch的查询依然是基于JSON风格的DSL来实现的。

DSL查询分类

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all

  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:

    • match_query
    • multi_match_query
  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:

    • ids
    • range
    • term
  • 地理(geo)查询:根据经纬度查询。例如:

    • geo_distance
    • geo_bounding_box
  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:

    • bool
    • function_score

查询的语法基本一致:

GET /indexName/_search
{
  "query": {
    "查询类型": {
      "查询条件": "条件值"
    }
  }
}

我们以查询所有为例,其中:

  • 查询类型为match_all
  • 没有查询条件
// 查询所有
GET /indexName/_search
{
  "query": {
    "match_all": {
    }
  }
}

其它查询无非就是查询类型查询条件的变化。

全文检索查询

使用场景

全文检索查询的基本流程如下:

  • 对用户搜索的内容做分词,得到词条
  • 根据词条去倒排索引库中匹配,得到文档id
  • 根据文档id找到文档,返回给用户

比较常用的场景包括:

  • 商城的输入框搜索
  • 百度输入框搜索

基本语法

常见的全文检索查询包括:

  • match查询:单字段查询
  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

GET /indexName/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT"
    }
  }
}

mulit_match语法如下:

GET /indexName/_search
{
  "query": {
    "multi_match": {
      "query": "TEXT",
      "fields": ["FIELD1", " FIELD12"]
    }
  }
}

示例

match查询示例:

在这里插入图片描述

multi_match查询示例:
在这里插入图片描述

可以看到,两种查询结果是一样的,为什么?

因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。

但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。

精准查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确值查询
  • range:根据值的范围查询

term查询

因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。

语法说明:

// term查询
GET /indexName/_search
{
  "query": {
    "term": {
      "FIELD": {
        "value": "VALUE"
      }
    }
  }
}

示例:

当我搜索的是精确词条时,能正确查询出结果:

在这里插入图片描述

但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:

外链图片转存

range查询

范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。

基本语法:

// range查询
GET /indexName/_search
{
  "query": {
    "range": {
      "FIELD": {
        "gte": 10, // 这里的gte代表大于等于,gt则代表大于
        "lte": 20 // lte代表小于等于,lt则代表小于
      }
    }
  }
}

示例:

在这里插入图片描述

总结

精确查询常见的有哪些?

  • term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段
  • range查询:根据数值范围查询,可以是数值、日期的范围

地理坐标查询

所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-queries.html

常见的使用场景包括:

  • 携程:搜索我附近的酒店
  • 滴滴:搜索我附近的出租车
  • 微信:搜索我附近的人

附近的酒店:
在这里插入图片描述

附近的车:

在这里插入图片描述

矩形范围查询

矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:

查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

语法如下:

// geo_bounding_box查询
GET /indexName/_search
{
  "query": {
    "geo_bounding_box": {
      "FIELD": {
        "top_left": { // 左上点
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": { // 右下点
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}

附近查询

附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。
换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:

语法说明:

// geo_distance 查询
GET /indexName/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "FIELD": "31.21,121.5" // 圆心
    }
  }
}

示例:

我们先搜索陆家嘴附近15km的酒店:

在这里插入图片描述

发现共有47家酒店。

然后把半径缩短到3公里:
在这里插入图片描述

可以发现,搜索到的酒店数量减少到了5家。

复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

相关性算分

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

例如,我们搜索 “虹桥如家”,结果如下:

[
  {
    "_score" : 17.850193,
    "_source" : {
      "name" : "虹桥如家酒店真不错",
    }
  },
  {
    "_score" : 12.259849,
    "_source" : {
      "name" : "外滩如家酒店真不错",
    }
  },
  {
    "_score" : 11.91091,
    "_source" : {
      "name" : "迪士尼如家酒店真不错",
    }
  }
]

elasticsearch新版采用的算法为BM25算法,公式如下:
在这里插入图片描述

算分函数查询

根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。

以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:
在这里插入图片描述

要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。

1)语法说明

在这里插入图片描述

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
  • 过滤条件:filter部分,符合该条件的文档才会重新算分
  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
    • weight:函数结果是常量
    • field_value_factor:以文档中的某个字段值作为函数结果
    • random_score:以随机数作为函数结果
    • script_score:自定义算分函数算法
  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
    • multiply:相乘
    • replace:用function score替换query score
    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
  • 2)根据过滤条件,过滤文档
  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改
  • 算分函数:决定函数算分的算法
  • 运算模式:决定最终算分结果
2)示例

需求:给“如家”这个品牌的酒店排名靠前一些

翻译一下这个需求,转换为之前说的四个要点:

  • 原始条件:不确定,可以任意变化
  • 过滤条件:brand = “如家”
  • 算分函数:可以简单粗暴,直接给固定的算分结果,weight
  • 运算模式:比如求和

因此最终的DSL语句如下:

GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {  .... }, // 原始查询,可以是任意条件
      "functions": [ // 算分函数
        {
          "filter": { // 满足的条件,品牌必须是如家
            "term": {
              "brand": "如家"
            }
          },
          "weight": 2 // 算分权重为2
        }
      ],
      "boost_mode": "sum" // 加权模式,求和
    }
  }
}
3)小结

function score query定义的三要素是什么?

  • 过滤条件:哪些文档要加分
  • 算分函数:如何计算function score
  • 加权方式:function score 与 query score如何运算

布尔查询

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:

在这里插入图片描述

每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。

需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
  • 其它过滤条件,采用filter查询。不参与算分
1)语法示例:
GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {"city": "上海" }}
      ],
      "should": [
        {"term": {"brand": "皇冠假日" }},
        {"term": {"brand": "华美达" }}
      ],
      "must_not": [
        { "range": { "price": { "lte": 500 } }}
      ],
      "filter": [
        { "range": {"score": { "gte": 45 } }}
      ]
    }
  }
}
2)示例

需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。

分析:

  • 名称搜索,属于全文检索查询,应该参与算分。放到must中
  • 价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中
  • 周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中

在这里插入图片描述

3)小结

bool查询有几种逻辑关系?

  • must:必须匹配的条件,可以理解为“与”
  • should:选择性匹配的条件,可以理解为“或”
  • must_not:必须不匹配的条件,不参与打分
  • filter:必须匹配的条件,不参与打分

搜索结果处理

搜索的结果可以按照用户指定的方式去处理或展示。

排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

普通字段排序

keyword、数值、日期类型排序的语法基本一致。

语法

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "FIELD": "desc"  // 排序字段、排序方式ASC、DESC
    }
  ]
}

排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推

示例

需求描述:酒店数据按照用户评价(score)降序排序,评价相同的按照价格(price)升序排序

在这里插入图片描述

地理坐标排序

地理坐标排序略有不同。

语法说明

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "_geo_distance" : {
          "FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点
          "order" : "asc", // 排序方式
          "unit" : "km" // 排序的距离单位
      }
    }
  ]
}

这个查询的含义是:

  • 指定一个坐标,作为目标点
  • 计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少
  • 根据距离排序

示例:

需求描述:实现对酒店数据按照到你的位置坐标的距离升序排序

提示:获取你的位置的经纬度的方式:https://lbs.amap.com/demo/jsapi-v2/example/map/click-to-get-lnglat/

假设我的位置是:31.034661,121.612282,寻找我周围距离最近的酒店。

在这里插入图片描述

分页

elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:

  • from:从第几个文档开始
  • size:总共查询几个文档

类似于mysql中的limit ?, ?

基本的分页

分页的基本语法如下:

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

深度分页问题

现在,我要查询990~1000的数据,查询逻辑要这么写:

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 990, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

这里是查询990开始的数据,也就是 第990~第1000条 数据。

不过,elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条:

在这里插入图片描述

查询TOP1000,如果es是单点模式,这并无太大影响。

但是elasticsearch将来一定是集群,例如我集群有5个节点,我要查询TOP1000的数据,并不是每个节点查询200条就可以了。

因为节点A的TOP200,在另一个节点可能排到10000名以外了。

因此要想获取整个集群的TOP1000,必须先查询出每个节点的TOP1000,汇总结果后,重新排名,重新截取TOP1000。

在这里插入图片描述

那如果我要查询9900~10000的数据呢?是不是要先查询TOP10000呢?那每个节点都要查询10000条?汇总到内存中?

当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。

针对深度分页,ES提供了两种解决方案,官方文档:

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
  • scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用。

小结

分页查询的常见实现方案以及优缺点:

  • from + size

    • 优点:支持随机翻页
    • 缺点:深度分页问题,默认查询上限(from + size)是10000
    • 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索
  • after search

    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:只能向后逐页查询,不支持随机翻页
    • 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页
  • scroll

    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:会有额外内存消耗,并且搜索结果是非实时的
    • 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。

高亮

高亮原理

什么是高亮显示呢?

我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:

在这里插入图片描述

高亮显示的实现分为两步:

  • 1)给文档中的所有关键字都添加一个标签,例如<em>标签
  • 2)页面给<em>标签编写CSS样式

实现高亮

高亮的语法

GET /hotel/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询
    }
  },
  "highlight": {
    "fields": { // 指定要高亮的字段
      "FIELD": {
        "pre_tags": "<em>",  // 用来标记高亮字段的前置标签
        "post_tags": "</em>" // 用来标记高亮字段的后置标签
      }
    }
  }
}

注意:

  • 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
  • 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
  • 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false

示例

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/189393.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于C#实现Kruskal算法

这篇我们看看第二种生成树的 Kruskal 算法&#xff0c;这个算法的魅力在于我们可以打一下算法和数据结构的组合拳&#xff0c;很有意思的。 一、思想 若存在 M{0,1,2,3,4,5}这样 6 个节点&#xff0c;我们知道 Prim 算法构建生成树是从”顶点”这个角度来思考的&#xff0c;然…

车载电子电器架构 ——电子电气架构设计方案概述

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 注:本文1万多字,认证码字,认真看!!! 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证…

机器学习探索计划——KNN算法流程的简易了解

文章目录 数据准备阶段KNN预测的过程1.计算新样本与已知样本点的距离2.按照举例排序3.确定k值4.距离最近的k个点投票 scikit-learn中的KNN算法 数据准备阶段 import matplotlib.pyplot as plt import numpy as np# 样本特征 data_X [[0.5, 2],[1.8, 3],[3.9, 1],[4.7, 4],[6.…

FreeRTOS入门教程(任务通知)

文章目录 前言一、什么是任务通知二、任务通知和队列&#xff0c;信号量的区别三、任务通知的优点和缺点1.优点2.缺点 四、任务状态和通知值五、任务通知相关的函数发出通知取出通知 六、任务通知具体使用1.实现轻量级信号量二进制信号量计数型信号量 2.实现轻量级队列 总结 前…

数仓中数据清洗的方法

在数据采集的过程中&#xff0c;需要从不同渠道获取数据并汇集在数仓中&#xff0c;采集的原始数据首先需要进行解析&#xff0c;然后对不准确、不完整、不合理、格式、字符等不规范数据进行过滤清洗&#xff0c;清洗过的数据才能更加符合需求&#xff0c;从而使后续的数据分析…

【数据库】执行计划中二元操作对一趟扫描算法的应用,理解代价评估的应用和优化,除了磁盘代价还有CPU计算代价不容忽略

二元操作的一趟算法 ​专栏内容&#xff1a; 手写数据库toadb 本专栏主要介绍如何从零开发&#xff0c;开发的步骤&#xff0c;以及开发过程中的涉及的原理&#xff0c;遇到的问题等&#xff0c;让大家能跟上并且可以一起开发&#xff0c;让每个需要的人成为参与者。 本专栏会定…

Java中的异常语法知识居然这么好玩!后悔没有早点学习

学习异常后&#xff0c;发现异常的知识是多么的吸引人&#xff01;不仅可以用来标记错误&#xff0c;还可以自己定义一个异常&#xff0c;用来实现自己想完成的业务逻辑&#xff0c;接下来一起去学习吧 目录 一、异常的概念及体系结构 1.异常的概念 2.异常的体系结构 3.异常…

【数据处理】 -- 【两分钟】了解【最好】的方式 -- 【正则表达式】

直接匹配&#xff1b; 普通字符 元匹配&#xff1a; . 任意单字符 r’表示单引号里字符为其特殊含义&#xff0c;比如.不是句号是匹配符的意思 *任意次数&#xff08;换行结束&#xff09; 一次及以上 {3,4}指定次数,至少3次&#xff0c;最多4次|{3}固定4次 [\d.]单个任意…

软件工程简明教程

软件工程简明教程 何为软件工程&#xff1f; 1968 年 NATO&#xff08;北大西洋公约组织&#xff09;提出了软件危机&#xff08;Software crisis&#xff09;一词。同年&#xff0c;为了解决软件危机问题&#xff0c;“软件工程”的概念诞生了。一门叫做软件工程的学科也就应…

redis运维(二十)redis 的扩展应用 lua(二)

一 redis 的扩展应用 lua redis lua脚本语法 ① 什么是脚本缓存 redis 缓存lua脚本 说明&#xff1a; 重启redis,脚本缓存会丢失 下面讲解 SCRIPT ... 系列 SCRIPT ② LOAD 语法&#xff1a;SCRIPT LOAD lua代码 -->载入一个脚本,只是预加载,不执行思考1&#xff1…

吴恩达《机器学习》10-4-10-5:诊断偏差和方差、正则化和偏差/方差

一、诊断偏差和方差 在机器学习中&#xff0c;诊断偏差和方差是改进模型性能的关键步骤。通过了解这两个概念&#xff0c;能够判断算法的问题究竟是欠拟合还是过拟合&#xff0c;从而有针对性地调整模型。 1. 概念理解 偏差&#xff08;Bias&#xff09;&#xff1a; 表示模…

《微信小程序开发从入门到实战》学习三十一

3.4 开发参与投票页面 3.4.9 显示投票结果 在实际使用中&#xff0c;一个用户不能对同一个投票进行重复提交&#xff0c;因此需要向服务器端提交投票结果和提交用户ID。另外页面&#xff0c;需要完善。用户提交完投票后 &#xff0c;还需要显示投票目前的结果&#xff0c;提交…

C#,《小白学程序》第二十课:大数的加法(BigInteger Add)

大数的&#xff08;加减乘除&#xff09;四则运算、阶乘运算。 乘法计算包括小学生算法、Karatsuba和Toom-Cook3算法。 重复了部分 19 课的代码。 1 文本格式 using System; using System.Linq; using System.Text; using System.Collections.Generic; /// <summary>…

字符串函数

目录 读取字符串的函数 1.gets()函数 2.fgets()函数&#xff08;不是所有的编译器都支持例如CodeBlocks&#xff09; 3.scanf()函数 4.getchar()函数 输出字符串的函数 1.puts()函数 2.fputs()函数&#xff08;编译器不一定支持&#xff09; 3.printf()函数 4.putchar…

【开源】基于Vue.js的陕西非物质文化遗产网站

文末获取源码&#xff0c;项目编号&#xff1a; S 065 。 \color{red}{文末获取源码&#xff0c;项目编号&#xff1a;S065。} 文末获取源码&#xff0c;项目编号&#xff1a;S065。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 设计目标2.2 研究内容2.3 研究方法与…

文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《基于多尺度分量特征学习的用户级超短期负荷预测》

这篇文章的标题表明研究的主题是用户级超短期负荷预测&#xff0c;并且该预测方法基于多尺度分量特征学习。让我们逐步解读这个标题&#xff1a; 用户级&#xff1a; 这表示研究的焦点是在个体用户层面上进行的。负荷预测可能是指电力系统中的负荷&#xff0c;即电力需求。用户…

大模型能否生成搜索引擎的未来?

文&#xff5c;郝 鑫 编&#xff5c;刘雨琦 ChatGPT火爆之前&#xff0c;水面下&#xff0c;也有中国公司也在朝着智能助手的方向努力。夸克便是其中之一。在GPT风靡科技圈后&#xff0c;国内就开始陆续冒出一些大模型厂商。对当时夸克而言&#xff0c;做大模型毋庸置疑&am…

五种多目标优化算法(MOPSO、MOAHA、NSGA2、NSGA3、MOGWO)求解微电网多目标优化调度(MATLAB)

一、多目标优化算法简介 &#xff08;1&#xff09;多目标粒子群优化算法MOPSO 多目标应用&#xff1a;基于多目标粒子群优化算法MOPSO求解微电网多目标优化调度&#xff08;MATLAB代码&#xff09;-CSDN博客 &#xff08;2&#xff09;多目标人工蜂鸟算法&#xff08;MOAHA…

Redis-Redis 高并发分布式锁

集群分布式场景高并发 1.negix配置代理和路由 高并发场景超卖问题 1.使用原生redis控制超卖时(若是商品&#xff0c;则可以将商品id作为锁对象)&#xff0c;会遇到的问题 问题一&#xff1a;若直接使用&#xff1a;将获取锁的对象和设置的超时的时间分开&#xff0c;则不能控…

桥接设计模式

package com.jmj.pattern.bridge;/*** 视频文件(实现化角色)*/ public interface VideoFile {void decode(String fileName); }package com.jmj.pattern.bridge;public class RmvFile implements VideoFile{Overridepublic void decode(String fileName) {System.out.println(&…