如何打造垂直LLM的护城河

B2B人工智能初创企业的一个伟大策略是打造“垂直人工智能”产品:成为特定行业的人工智能助手,比如律师、金融服务、医生。 听起来很简单:你可以利用LLM的超能力,并将其应用于宠物行业的特定数据和用例。 这就是我们在Explain所做的事情:Explain是公共部门(基础设施、公用事业、房地产、建筑等)专业人士的人工智能助手,帮助他们在超级无聊的公开招标中挖掘关键信息,总结 正式报告或撰写建筑许可证草稿。

但问题在于:如果你和每个人都获得相同的LLM,你如何建立护城河,即可防御的竞争优势? 你如何才能不依赖你的 LLM 提供商并确保创造的价值归你所有? 根据我们的经验,我们找到了三种有效的方法。

在线工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 

1、无聊的工作流程自动化胜过聪明的洞察力生成

标准 B2B 策略:如果你嵌入用户的流程和工作流程中,你就锁定了他们。这对于AI产品仍然适用,对我们来说,这意味着专注于流程自动化而不是洞察生成。

我们团队的座右铭是“无聊的阅读和写作是机器的事”:我们有时会担心人工智能霸主即将崛起,但截至目前,大多数人工智能仍然是自动执行人类很容易完成的无聊、重复性任务 一次,但不可能做数千次。 LLM所做的主要是扩大自动化的范围。 我们的一位客户希望跟踪其行业中每次公开招标的获胜者和失败者; 对于每个招标,地方当局都会发布一份小报告,客户团队必须提取 3 条信息; 但每年有 100,000 份招标报告,信息以半结构化格式编写,必须以另一种格式输入客户的 CRM 中。 非常无聊,可以通过人工智能实现自动化,而且在工作流程中非常重要!

对我们来说,这些用例比复杂的评分、趋势分析或出色的数据可视化效果更好,后者虽然很耀眼,但并不持久。

2、你需要一些自己的数据(LangChain还不够)

LLM让我们所有人都兴奋不已,但如果没有你自己的一些数据,LLM就没有意义。 它可以是你公开获取并构建到数据库中的数据(新闻、官方文件、法律、财务报告),也可以是你的用户的数据(他们的内部备忘录档案或之前对公开招标的回复),但你需要对包含用户相关信息的数据的特权访问。 这就是为什么,在Explain,我们的第一步是建立我们独特的公共文档数据库,我们抓取了数以万计的网站,然后进行清理、分类和结构化。 然后是LLM。

要将 LLM 应用于你的数据,可能会使用某些版本的 LangChain 软件包,它允许你通过将数据作为提示的一部分提供给 LLM 来处理自己的数据,而不是简单地与 GPT 对话并让它处理你自己的数据。 根据其参数的权重回答。 因此,你的技术栈将如下所示:根据你的数据库,你将提取数据的相关部分(检索阶段); 然后,你将在提示中将这些部分提供给LLM并表述任务(提示工程阶段)。 最近许多基于 LLM 的工具都使用这种类型的体系结构(例如本文中描述的):新的 Bing 或工具允许你在浏览器、pdf 或操作系统中使用 LLM。

这是一个非常强大的技术栈,它避免了 LLM 因自己的设备而陷入的许多幻觉和错误。 它也非常灵活,在我们的团队中它已经成为许多传统 NLP 任务(情感分析、实体识别、摘要等)的默认响应。 顺便说一句:如果你当前的 NLP 堆栈是围绕许多专门的、非 LLM 的算法构建的,那么你就背负了 NLP 债务,并且可能不再具有竞争优势。

但这里的关键点是,虽然超级功能来自LLM组件,但护城河来自数据库组件。 所以如果你没有先建立一个独特的数据库,LangChain 是不够的。

3、微调 LLM 胜过提示工程以实现可扩展性

前两个护城河都不是来自LLM本身。 这个可以。

前面描述的检索 + LLM 架构的一个限制是它存在不可扩展的风险。 当然,编写精心设计的提示并调用 GPT-4 API 确实有效,但成本可能非常高:使用 GPT-4,我们花费了 3 美元来建立一个地区最有利于风电的 50 位地方官员名单 。 我们不可能把它交给用户。

根据Explain 首席技术官 Guillaume Barrois 进行的研究,适合我们的技术栈如下。

  • 我们没有使用最新、最昂贵的 LLM (GPT-4),而是使用更小的模型(到目前为止,我们使用了 Hugging Face 库中的开源模型)。 成本降低 10 至 100 倍。
  • 然后,为了提高性能,我们根据我们的文档对其用例进行微调:我们向其提供有关新基础设施项目的民选官员声明的训练集或一页官方决策的 3 行摘要。
  • 神奇之处在于:用于微调的训练集非常大(高达 100 000 个样本),但我们不是手动构建训练集:我们使用 GPT-4 代替。 当前LLM的一项不为人知的成就是,他们在许多中低复杂度的任务上实现了人类水平的表现:正如一位大学水平的老师向我报告的那样,GPT-4 在总结方面比 80% 的人更好。 本科生。 因此,对于此类任务,你可以使用 GPT-4 来构建训练集,而不是人工标记器,然后将其提供给开源 LLM 进行微调。 你可以构建最先进的自动化技术栈,专门用于微调任何LLM。
  • 因此,你最终会得到一个更便宜、更小、更快的 LLM,它可以满足你 75% 的任务,而上一代旗舰 LLM 则只需要 1% 的资源。

斯坦福Alpaca论文中很好地描述了这一策略,根据我们的测试,它似乎适合我们。 工具不断涌现,可以帮助你更轻松地完成工作。 当然,它可能不适用于高复杂性或高方差的任务,但我们相信这是 B2B 用例的最佳选择,在这些用例中,用户倾向于在大量实例中重复有限数量的任务。

我们还相信,这种策略比根据数据从头开始培训自己的LLM的“硬核”路线具有更好的性价比,例如彭博社最近报道的那样。 我不清楚这项工作的哪一部分是关于效率与研发展示他们的LLM技能,但我们把钱花在微调路线上。 来自谷歌内部的泄密事件也证实了这一点。

这个微调栈与成本优化无关:它提供了完全不同的用户体验,因为它允许你为所有核心任务释放 LLM 的力量,并大大加快推理性能。 这种优势是有道理的,因为它基于你的数据和你对用例的了解。

该技术栈将限制你对某个特定 LLM 提供商的依赖:栈的核心是微调组件,它可以插入许多不同的通用 LLM 上。

在Explain,我们非常相信SaaS 公司的垂直人工智能战略。 我们使用产品驱动和技术驱动的策略来建立强大的进入壁垒:充分了解你的客户并融入他们的工作流程; 投资拥有一个独特的数据库; 构建一个可扩展的 LLM 栈,针对你的数据和用例进行微调。


原文链接:垂直LLM的护城河 - BimAnt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/187416.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

量子计算的发展

目录 一、量子力学的发展历程二、量子计算的发展历程三、量子计算机的发展历程四、量子信息科学的发展 一、量子力学的发展历程 量子力学是现代物理学的一个基本分支,它的发展始于20世纪初。以下是量子力学发展的几个重要阶段: 普朗克(1900&…

基于JavaWeb+SpringBoot+Vue医院管理系统小程序的设计和实现

基于JavaWebSpringBootVue医院管理系统小程序的设计和实现 源码获取入口Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏[Java 源码获取 源码获取入口 Lun文目录 目录 1系统概述 1 1.1 研究背景 1 1.2研究目的 1 1.3系统设计思想 1 2相关技术 2 2.1微信小程序 2 2.2 …

「Java开发中文指南」IntelliJ IDEA插件安装(一)

IntelliJ IDEA是java编程语言开发的集成环境。IntelliJ在业界被公认为最好的Java开发工具,尤其在智能代码助手、代码自动提示、重构、JavaEE支持、各类版本工具(git、svn等)、JUnit、CVS整合、代码分析、 创新的GUI设计等方面的功能是非常强大的。 插件扩展了Intel…

MYSQL基础知识之【创建,删除,选择数据库】

文章目录 前言MySQL 创建数据库使用 mysqladmin 创建数据库使用 PHP脚本 创建数据库 MySQL 删除数据库使用 mysqladmin 删除数据库使用PHP脚本删除数据库 MySQL 选择数据库从命令提示窗口中选择MySQL数据库使用PHP脚本选择MySQL数据库 后言 前言 hello world欢迎来到前端的新世…

网络层(IP协议)

文章目录 网络层IP协议IP协议报头32位源IP地址和目的IP地址:为了解决IP地址不够用的情况 IP地址管理子网掩码特殊IP 路由选择(简介) 网络层 网络层主要负责地址管理和路由选择.代表协议就是IP协议. IP协议 IP协议报头 4位版本: 4: 表示IPv4 ; 6: 表示IPv6 4位首部长度: 描述…

格式化输入输出

跟着肯哥(不是我)学格式化输入输出 C语言格式化输入 在C语言中,格式化输入(Formatted Input)是一种从标准输入读取数据并按照指定格式进行解析的操作,它主要通过使用标准库函数scanf()来实现格式化输入。 …

YOLOv8改进 | 2023 | FocusedLinearAttention实现有效涨点

论文地址:官方论文地址 代码地址:官方代码地址 一、本文介绍 本文给大家带来的改进机制是Focused Linear Attention(聚焦线性注意力)是一种用于视觉Transformer模型的注意力机制(但是其也可以用在我们的YOLO系列当中从而提高检测…

小程序项目:springboot+vue基本微信小程序的学生健康管理系统

项目介绍 随着信息技术和网络技术的飞速发展,人类已进入全新信息化时代,传统管理技术已无法高效,便捷地管理信息。为了迎合时代需求,优化管理效率,各种各样的管理系统应运而生,各行各业相继进入信息管理时…

基于协作搜索算法优化概率神经网络PNN的分类预测 - 附代码

基于协作搜索算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于协作搜索算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于协作搜索优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

“升级图片质量:批量提高或缩小像素,赋予图片全新生命力!“

如果你想让你的图片更加清晰、更加美观,或者符合特定的像素要求,那么现在有一个好消息要告诉你!我们推出了一款全新的图片处理工具,可以帮助你批量提高或缩小图片像素,让你的图片焕发出新的生机! 第一步&a…

基于人工蜂鸟算法优化概率神经网络PNN的分类预测 - 附代码

基于人工蜂鸟算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于人工蜂鸟算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于人工蜂鸟优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

我的崩溃。。想鼠??!

身为程序员哪一个瞬间让你最奔溃? 某天一个下午崩溃产生。。。 一个让我最奔溃的瞬间是关于一个看似无害的拼写错误。我当时正在为一个电子商务网站添加支付功能,使用了一个第三方支付库。所有的配置看起来都正确,代码也没有报错,…

zookeeper 单机伪集群搭建简单记录

1、官方下载加压后,根目录下新建data和log目录,然后分别拷贝两份,分别放到D盘,E盘,F盘 2、data目录下面新建myid文件,文件内容分别为1,2,3.注意文件没有后缀,不能是txt文…

数据结构—小堆的实现

前言:前面我们已经学习了二叉树,今天我们来学习堆,堆也是一个二叉树,堆有大堆有小堆,大堆父节点大于子节点,小堆父节点总小于子节点,我们在学习C语言的时候也有一个堆的概念,那个堆是…

栈和队列OJ题目——C语言

目录 LeetCode 20、有效的括号 题目描述: 思路解析: 解题代码: 通过代码: LeetCode 225、用队列实现栈 题目描述: 思路解析: 解题代码: 通过代码: LeetCode 232、用栈…

C/C++ 运用Npcap发送UDP数据包

Npcap 是一个功能强大的开源网络抓包库,它是 WinPcap 的一个分支,并提供了一些增强和改进。特别适用于在 Windows 环境下进行网络流量捕获和分析。除了支持通常的网络抓包功能外,Npcap 还提供了对数据包的拼合与构造,使其成为实现…

HarmonyOS简述及开发环境搭建

一、HarmonyOS简介 1、介绍 HarmonyOS是一款面向万物互联时代的、全新的分布式操作系统。有三大系统特性,分别是:硬件互助,资源共享;一次开发,多端部署;统一OS,弹性部署。 HarmonyOS通过硬件互…

洛谷P1049装箱问题 ————递归+剪枝+回溯

没没没没没没没没没错,又是一道简单的递归,只不过加了剪枝,我已经不想再多说,这道题写了一开始写了普通深搜,然后tle了一个点,后面改成剪枝,就ac了,虽然数据很水,但是不妨…

第96步 深度学习图像目标检测:FCOS建模

基于WIN10的64位系统演示 一、写在前面 本期开始,我们继续学习深度学习图像目标检测系列,FCOS(Fully Convolutional One-Stage Object Detection)模型。 二、FCOS简介 FCOS(Fully Convolutional One-Stage Object D…

iOS强引用引起的内存泄漏

项目中遇到一个问题: 1.在A页面的ViewDidLoad 方法里写了一个接收通知的方法,如下图: 然后在B页面发送通知 (注:下图的NOTI 是 [NSNotificationCenter defaultCenter] 的宏, 考虑一下可能有小白看这篇文章…