基于协作搜索算法优化概率神经网络PNN的分类预测 - 附代码

基于协作搜索算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于协作搜索算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于协作搜索优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用协作搜索算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于协作搜索优化的PNN网络

协作搜索算法原理请参考:https://blog.csdn.net/u011835903/article/details/128482359

利用协作搜索算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

协作搜索参数设置如下:

%% 协作搜索参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,协作搜索-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/187403.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

“升级图片质量:批量提高或缩小像素,赋予图片全新生命力!“

如果你想让你的图片更加清晰、更加美观,或者符合特定的像素要求,那么现在有一个好消息要告诉你!我们推出了一款全新的图片处理工具,可以帮助你批量提高或缩小图片像素,让你的图片焕发出新的生机! 第一步&a…

基于人工蜂鸟算法优化概率神经网络PNN的分类预测 - 附代码

基于人工蜂鸟算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于人工蜂鸟算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于人工蜂鸟优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

我的崩溃。。想鼠??!

身为程序员哪一个瞬间让你最奔溃? 某天一个下午崩溃产生。。。 一个让我最奔溃的瞬间是关于一个看似无害的拼写错误。我当时正在为一个电子商务网站添加支付功能,使用了一个第三方支付库。所有的配置看起来都正确,代码也没有报错,…

zookeeper 单机伪集群搭建简单记录

1、官方下载加压后,根目录下新建data和log目录,然后分别拷贝两份,分别放到D盘,E盘,F盘 2、data目录下面新建myid文件,文件内容分别为1,2,3.注意文件没有后缀,不能是txt文…

数据结构—小堆的实现

前言:前面我们已经学习了二叉树,今天我们来学习堆,堆也是一个二叉树,堆有大堆有小堆,大堆父节点大于子节点,小堆父节点总小于子节点,我们在学习C语言的时候也有一个堆的概念,那个堆是…

栈和队列OJ题目——C语言

目录 LeetCode 20、有效的括号 题目描述: 思路解析: 解题代码: 通过代码: LeetCode 225、用队列实现栈 题目描述: 思路解析: 解题代码: 通过代码: LeetCode 232、用栈…

C/C++ 运用Npcap发送UDP数据包

Npcap 是一个功能强大的开源网络抓包库,它是 WinPcap 的一个分支,并提供了一些增强和改进。特别适用于在 Windows 环境下进行网络流量捕获和分析。除了支持通常的网络抓包功能外,Npcap 还提供了对数据包的拼合与构造,使其成为实现…

HarmonyOS简述及开发环境搭建

一、HarmonyOS简介 1、介绍 HarmonyOS是一款面向万物互联时代的、全新的分布式操作系统。有三大系统特性,分别是:硬件互助,资源共享;一次开发,多端部署;统一OS,弹性部署。 HarmonyOS通过硬件互…

洛谷P1049装箱问题 ————递归+剪枝+回溯

没没没没没没没没没错,又是一道简单的递归,只不过加了剪枝,我已经不想再多说,这道题写了一开始写了普通深搜,然后tle了一个点,后面改成剪枝,就ac了,虽然数据很水,但是不妨…

第96步 深度学习图像目标检测:FCOS建模

基于WIN10的64位系统演示 一、写在前面 本期开始,我们继续学习深度学习图像目标检测系列,FCOS(Fully Convolutional One-Stage Object Detection)模型。 二、FCOS简介 FCOS(Fully Convolutional One-Stage Object D…

iOS强引用引起的内存泄漏

项目中遇到一个问题: 1.在A页面的ViewDidLoad 方法里写了一个接收通知的方法,如下图: 然后在B页面发送通知 (注:下图的NOTI 是 [NSNotificationCenter defaultCenter] 的宏, 考虑一下可能有小白看这篇文章…

物联网中基于信任的安全性调查研究:挑战与问题

A survey study on trust-based security in Internet of Things: Challenges and issues 文章目录 a b s t r a c t1. Introduction2. Related work3. IoT security from the one-stop dimension3.1. Output data related security3.1.1. Confidentiality3.1.2. Authenticity …

【vue_2】创建一个弹出权限不足的提示框

定义了一个名为 getUserRole 的 JavaScript 函数,该函数接受一个参数 authorityId,根据这个参数的不同值返回相应的用户角色字符串。这段代码的目的是根据传入的 authorityId 值判断用户的角色,然后返回相应的角色名称。 如果 authorityId 的…

Visual Studio 中文注释乱码解决方案

在公司多人开发项目中经常遇到拉到最新代码,发现中文注释都是乱码,很是emjoy..... 这是由于编码格式不匹配造成的,如果你的注释是 UTF-8 编码,而文件编码是 GBK 或者其他编码,那么就会出现乱码现象。一般的解决办法是…

STM32-使用固件库新建工程

参考链接: 【入门篇】11-新建工程—固件库版本(初学者必须认认真真看)_哔哩哔哩_bilibili 使用的MCU是STM32F103ZET6 。 这篇参考的是野火的资料,可以在“野火大学堂”或者它的论坛上下载。(我通常是野火和正点原子的资料混着看的…

【AI认证笔记】NO.2人工智能的发展

目录 一、人工智能的发展里程碑 二、当前人工智能的发展特点 1.人工智能进入高速发展阶段 2.人工智能元年 三、人工智能高速发展的三大引擎 1.算法突破 2.算力飞跃 3.数据井喷 四、AI的机遇 五、AI人才的缺口 六、行业AI 人工智能算法,万物互联&#xff…

基于mediapipe的人手21点姿态检测模型—CPU上检测速度惊人

前期的文章,我们介绍了MediaPipe对象检测与对象分类任务,也分享了MediaPipe的人手手势识别。在进行人手手势识别前,MediaPipe首先需要进行人手的检测与人手坐标点的检测,经过以上的检测后,才能把人手的坐标点与手势结合起来,进行相关的手势识别。 MediaPipe人手坐标点检测…

案例022:基于微信小程序的行政复议在线预约系统

文末获取源码 开发语言:Java 框架:SSM JDK版本:JDK1.8 数据库:mysql 5.7 开发软件:eclipse/myeclipse/idea Maven包:Maven3.5.4 小程序框架:uniapp 小程序开发软件:HBuilder X 小程序…

将 Hexo 部署到阿里云轻量服务器(保姆级教程)

将 Hexo 部署到阿里云轻量服务器(保姆级教程) 顺哥轻创 1 前言 作为有梦想的,有追求的程序员,有一个自己的个人博客简直就是必须品。你可以选择 wordpress 这种平台,直接使用,在任何地方只要有网络就能写博客。还可以选择 hexo 这种静态博客,但是发文章就没有那么随心…

CentOS7安装Docker运行环境

1 引言 Docker 是一个用于开发,交付和运行应用程序的开放平台。Docker 使您能够将应用程序与基础架构分开,从而可以快速交付软件。借助 Docker,您可以与管理应用程序相同的方式来管理基础架构。通过利用 Docker 的方法来快速交付,…