排序算法:归并排序、快速排序、堆排序

归并排序

要将一个数组排序,可以先将它分成两半分别排序,然后再将结果合并(归并)起来。这里的分成的两半,每部分可以使用其他排序算法,也可以仍然使用归并排序(递归)。

我看《算法》这本书里对归并算法有两种实现,一种是“自顶向下”,另一种是“自底向上”。这两种方法,个人认为只是前者用了递归的方法,后者使用两个 for 循环模拟了递归压栈出栈的算法,本质上还是相同的(如果理解错误,还望大佬指出)。

算法步骤

1、将要排序的序列分成两部分。
2、将两部分分别各自排序。然后再将两个已经排序好的序列“归并”到一起,归并后的整个序列就是有序的。
3、将两个有序的序列归并的步骤:
3.1、先申请一个空间,大小足够容纳两个已经排序的序列。
3.2、设定两个指针,最初位置分别为两个已经排序序列的起始位置。
3.3、比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置。
3.4、重复3.3 步骤。

归并排序,比较重要的是“分治”思想和“归并”的操作。

归并操作,是将两个“有序”的序列,合并成一个有序的序列的方法。而这两个有序的序列,又是根据“分治”思想将一个学列分割成的两部分(将一个序列不断的分隔,到最后就剩一个的时候他自然就是有序的)。

public class MergeSort {


    public static void main(String[] args) {

        int[] nums = {12,123,432,23,1,3,6,3,-1,6,2,6};;

        sort(nums,0,nums.length -1);

        System.out.printf("finish!");

    }

    public static void sort(int[] nums,int left,int right){
        if(left >= right){
            return;
        }
        // 递归的将左半边排序
        sort(nums,left,right - left / 2 - 1); 
        // 递归的将右半边排序
        sort(nums,right - left / 2 ,right);
        // 此时左右半边都分别各自有序,再将其归并到一起。
        // 如:[1,9,10    ,  3,7,8]
        merge(nums,left,right - left / 2,right);
    }
    // 此方法叫做原地归并,将数组 nums 根据 mid 分隔开,左右看作是两个数组。
    // 类似于 merge(int[] nums1,int[] nums2),将 nums1 和 nums2 归并
    public static void merge(int[] nums ,int left,int mid,int right){

        int i = left,j = mid;

        int[] temp_nums = new int[nums.length];
        for(int key = left ; key <= right; key++)
            // 将原来数组复制到临时数组中。
            temp_nums[key] = nums[key];

        for(int key = i ; key <= right; key++){
            if(i > mid){
                nums[key] = temp_nums[j++];
            } else if (j > right) {
                nums[key] = temp_nums[i++];
            } else if (temp_nums[i] > temp_nums[j]) {
                nums[key] = temp_nums[j++];
            }else{
                nums[key] = temp_nums[i++];
            }
        }

    }

}

快速排序

快速排序是一种分治的排序算法,它将一个数组分成两个子数组,将两部分独立的排序

快速排序可能是应用最广泛的排序算法了。快速排序流行的原因是它实现简单、适用于各种不同的输入数据且在一般应用中比其他排序算法都要快得多。——《算法(第四版)》

算法步骤

  1. 从数列中挑出一个元素,称为 "基准"(pivot);
  2. 所有元素比"基准"值小的摆放在前面,所有元素比"基准"值大的摆在后面,相同的数可以到任一边。这个称为分区(partition)操作。
  3. 递归地(recursive)使用同样的方法把小于基准值元素的子数列和大于基准值元素的子数列排序;

算法过程

1、给定一个乱序的数组

[5,1,4,6,2,66,34,8]

2、选择第一个为基准数,此时把第一个位置置空。两个指针,left从左到右,找比 piovt “大”的数;right 从右向左,找比 piovt “小”的数。

left            right
 |               |
[_,1,4,6,2,66,34,8]
 |
piovt = 5

3、right 从右向左(<-),找比 piovt “小”的数 2。

  left right
   |     |
[_,1,4,6,2,66,34,8]
 |
piovt = 5

4、left从左到右(->),找到了比 piovt 大的数 6。

    left  right
       | |
[_,1,4,6,2,66,34,8]
 |
piovt = 5

5、此时将 left 和 right 上的数对调。

    left right
       | |
[_,1,4,2,6,66,34,8]
 |
piovt = 5

6、right 继续向左查找,直到 left = right。(正常情况下要重复 4、5 步骤多次才会得到 left = right)
此时将 left 位置的数放到原来 piovt 位置上,将 piovt 放到 left 位置上。

      left
      right
       |
[2,1,4,5,6,66,34,8]
 -     -
 |
piovt = 5

7、此时将整个数组根据 piovt 分割成两个部分,左边都比 piovt 小,右边都比 piovt 大。递归的处理左右两部分。

实现


public class QuickSort {

    public static void main(String[] args) {
        int[] nums = {5,1,4,6,2,66,34,8,34,534,5};

        int[] sorted = sort(nums,0 , nums.length - 1);
        
        System.out.println("finish!");
    }

    // 排序
    public static int[] sort(int[] nums , int left , int right){

        if(left <= right){ 

            // 将 nums 以 mid 分成两部分
            // 左边的小于 nums[min]
            // 右边的大于 nums[min]
            int mid = partition(nums,left,right);
            // 递归
            sort(nums,left,mid - 1);
            sort(nums,mid + 1 ,right);

        }

        return nums;
    }

    public static int partition(int[] nums , int left , int right){
        //int pivot = left;
        int i = left , j = right + 1; // 左右两个指针
        int pivot = nums[left]; // 基准数,比他小的放到左边,比他大的放到右边。

        while ( true ){

            // 从右向左找比 pivot 小的。
            while (j > left && nums[--j] > pivot){
                if(j == left){
                    // 到头了
                    break;
                }
            }

            // 先从左向右找比 pivot 大的。
            while (i < right && nums[ ++ i] < pivot ){
                if( i == right){
                    // 到头了
                    break;
                }
            }

            if(i >= j ) break;

            // 交换 i 位置和 j 位置上的数
            // 因为此时 nums[i] > pivot 并且 nums[j] < pivot
            swap(nums,i , j);

        }
        // 由于 left 位置上的数是 pivot=
        // 此时 i = j 且 nums[i/j] 左边的数都小于 pivot , nums[i/j] 右边的数都大于 pivot。
        // 此时交换 left 和 j 位置上的数就是将 pivot 放到中间
        swap(nums,left,j);

        return j ;
    }
    
    // 交换数组中两个位置上的数
    public static void swap(int[] nums , int i1 , int i2){
        int n = nums[i1];
        nums[i1] = nums[i2];
        nums[i2] = n;
    }


}

堆排序

堆排序主要是利用“堆”这种数据结构的特性来进行排序,它本质上类似于“选择排序”。都是每次将最大值(或最小值),找出来放到数列尾部。不过“选择排序”需要遍历整个数列后选出最大值(可以到上面再熟悉下选择排序算法),“堆排序”是依靠堆这种数据结构来选出最大值。但是每次重新构建最大堆用时要比遍历整个数列要快得多。

堆排序中用到的两种堆,大顶堆和小顶堆:

1、大顶堆:每个节点的值都大于或等于其子节点的值(在堆排序算法中一般用于升序排列);
2、小顶堆:每个节点的值都小于或等于其子节点的值(在堆排序算法中一般用于降序排列);

图片来自 dreamcatcher-cx 的文章

我们给树的每个节点编号,并将编号映射到数组的下标就是这样:

图片来自 dreamcatcher-cx 的文章

该数组从逻辑上是一个堆结构,我们用公式来描述一下堆的定义就是:

1、大顶堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]
2、小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2]

这里只要求父节点大于两个子节点,并没有要求左右两个子节点的大小关系。

算法过程

1、将一个 n 长的待排序序列arr = [0,……,n-1]构造成一个大顶堆。
2、此时数组的 0 位置(也就是堆顶),就是数组的最大值了,将其与数组的最后一个数交换。
3、将剩下 n-1 个数重复 1和2 操作,最终会得到一个有序的序列。

堆排序是“选择排序”的一种变体,算法中比较难的地方是用数组构建“大顶堆”或“小顶堆”的过程。

实现堆排序前,我们要知道怎么用数组构建一个逻辑上的最大堆,这里会用到几个公式(假设当前节点的序号是 i,可以结合上图理解下下面的公式):

1、左子节点的序号就是:2i + 1;
2、右子几点的序号就是:2i + 2;
3、父节点的序号就是:(i-1) / 2 (i不为0);

public class HeapSort {

    static int temp ;

    public static void main(String[] args) {

        int[] nums = {5,1,4,6,2,66,-1,34,-9,8};

        sort(nums);

        System.out.println("finish!");
    }


    public static void sort(int[] nums){


        // 第一步要先将 nums 构建成最大堆。
        for(int i = (nums.length - 1) / 2 ; i >= 0; i-- ){
            //从第一个非叶子结点从下至上,从右至左调整结构
            maxHeapify(nums,i,nums.length);
        }

        // 遍历数组
        // j 是需要排序的数组的最后一个索引位置。
        for(int j = nums.length - 1 ; j > 0 ; j --){
            // 每次都调整最大堆堆顶(nums[0]),与数组尾的数据位置(nums[j])。
            swap(nums,0,j);
            // 重新调整最大堆
            maxHeapify(nums,0,j);
        }


    }

    /**
     * 将 nums 从 i 开始的 len 长度调整成最大堆。
     * (注意:此方法只适合调整已经是最大堆但是被修改了的堆,或者只有三个节点的堆)
     * len :需要计算到数组 nums 的多长的地方。
     * i :父节点在的位置。
     */
    public static void maxHeapify(int[] nums,int i , int len){

        // 是从左子节点开始
        int key = 2 * i + 1;

        if(key >= len){
            // 说明没有子节点。
            return;
        }

        // key + 1 是右子节点的位置。
        if(key + 1 < len && nums[key] < nums[key + 1]){
            // 此时说明右节点比左节点大。
            // 此时只要将父节点跟 右子节 点比就行了。
            key += 1;
        }

        if(nums[i] < nums[key]){
            // 子节点比父节点大,交换子父界节点的数据,将父节点设置为最大。
            swap(nums,i,key);
            // 此时子节点上的数变了,就要递归的再去,计算子节点是不是最大堆。
            maxHeapify(nums,key,len);
        }

    }

    /**
     * 交换 i 和 j 位置的数据
     */
    public static void swap(int[] nums,int i,int j){
        temp = nums[i];
        nums[i] = nums[j];
        nums[j] = temp;
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/187103.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【spring(五)】SpringMvc总结 SSM整合流程

目录 一、SpringMVC简介&#xff1a; 二、SpringMVC快速入门&#xff1a; 三、SpringMVC bean的管理&#xff1a;⭐ ①配置bean ②扫描bean 四、SpringMVC配置类&#xff1a;⭐ 五、SpringMVC 请求与响应 六、SpringMVC REST风格 七、SSM整合 异常处理&#xff1a; 八、…

【STM32】新建工程

学习来源&#xff1a;[2-2] 新建工程_哔哩哔哩_bilibili 目前STM32的开发主要有基于寄存器的开发方式、基于标准库也就是库函数的方式和基于HAL库的方式。本学习是基于库函数的方式。&#xff08;各种资料去百度云下载&#xff09; 1 建立工程文件夹 Keil中新建工程&#xf…

浅谈dll劫持免杀

文章目录 前置知识dll加载dll寻找DLL劫持-白加黑-导入加载DLL劫持-白加黑-导出编译DLL劫持-白加黑-图片分离hookdll原理win api核心代码注意事项 前置知识 基础技能 c语言基本知识win32 API 知识会在微软官网查询APIPE结构知识 原理 DLL劫持的原理主要就是windows下加载DLL…

医学检验科LIS系统源码 样本采集、检验、分析

LIS把检验、检疫、放免、细菌微生物及科研使用的各类分析仪器&#xff0c;通过计算机联网&#xff0c;实现各类仪器数据结果的实时自动接收、自动控制及综合分析&#xff1b;系统可与条码设备配套使用&#xff0c;自动生成条码&#xff0c;减少实验室信息传递中人为因素导致的误…

搭建Linux环境 云服务器指南

我们要学习Linux的相关知识&#xff0c;必须搭建Linux环境 这里有三种方式&#xff1a; 这篇文章我们介绍一下云服务器的购买 购买云服务器 我们以腾讯云为例, 其他的服务器厂商也是类似 云服务器或轻量级应用服务器都是可以的&#xff0c;我们以轻量级应用服务器为例 1.进入…

初学vue3与ts:setup与setup()下的数据写法

把setup写在script里 <template><div><div class"index-title">script setup</div><div class"title">字符串&#xff1a;</div><div class"title-sub">ref版&#xff1a;{{strRef}}</div><…

量子计算 | 解密著名量子算法Shor算法和Grover算法

专栏集锦&#xff0c;大佬们可以收藏以备不时之需 Spring Cloud实战专栏&#xff1a;https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏&#xff1a;https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏&#xff1a;https:/…

数字化转型如何赋能企业实现数字化增值?

随着科技的不断发展&#xff0c;数字化转型已经成为了企业营销的重要趋势。数字化转型不仅可以提高企业的运营效率&#xff0c;还可以更好地满足消费者的需求&#xff0c;提升企业的市场竞争力。 一、数字化转型可以提高企业营销的精准性 在传统的企业营销中&#xff0c;营销人…

FreeRTOS学习之路,以STM32F103C8T6为实验MCU(2-5:队列)

学习之路主要为FreeRTOS操作系统在STM32F103&#xff08;STM32F103C8T6&#xff09;上的运用&#xff0c;采用的是标准库编程的方式&#xff0c;使用的IDE为KEIL5。 注意&#xff01;&#xff01;&#xff01;本学习之路可以通过购买STM32最小系统板以及部分配件的方式进行学习…

Robust taboo search for the quadratic assignment problem-二次分配问题的鲁棒禁忌搜索

文章目录 摘要关键字结论研究背景1. Introduction 常用基础理论知识2. The quadratic assignment problem3. Taboo search3.1. Moves3.2 Taboo list3.3. Aspiration function3.4. Taboo list size4. Random problems5. Parallel taboo search 研究内容、成果7. Conclusion 潜在…

Spring AOP:什么是AOP? 为什么要用AOP?如何学习AOP?

文章目录 &#x1f386;前言1.为什么要用 AOP3.如何学习去 AOP?3.1 AOP 的组成切面&#xff08;Aspect&#xff09;连接点&#xff08;Join Point&#xff09;切点&#xff08;Pointcut&#xff09;通知&#xff08;Advice&#xff09; 3. Spring AOP 实现3.1 普通的方式实现 …

画中画视频剪辑:如何实现多画面融合,提升创作质量

在视频剪辑的过程中&#xff0c;画中画是一种常见的技巧&#xff0c;它能够将多个画面融合在一起&#xff0c;创造出一种独特的效果&#xff0c;增强视频的观赏性和表现力。这种技巧常常用于电影、电视和广告中&#xff0c;以增加视觉冲击力&#xff0c;引导注意力&#xff0c;…

系列十五、BeanDefinition

一、BeanDefinition 1.1、概述 BeanDefinition是一个接口&#xff0c;主要负责存储bean的定义信息&#xff0c;决定bean的生产方式&#xff0c;类似于说明书。后续BeanFactory就可以根据这些信息生产bean了。比如实例化&#xff1a;可以通过反射得到实例对象&#xff1b;比如&…

人工智能Keras图像分类器(CNN卷积神经网络的图片识别篇)

上期文章我们分享了人工智能Keras图像分类器(CNN卷积神经网络的图片识别的训练模型),本期我们使用预训练模型对图片进行识别:Keras CNN卷积神经网络模型训练 导入第三方库 from keras.preprocessing.image import img_to_array from keras.models import load_model impor…

宝塔 Linux 面板安装一个高大上的论坛程序 —— Flarum

这个是很早搭建的版本,基于宝塔面板,比较复杂,如果想要简单的搭建方法,可以参看咕咕新写的这篇: 【好玩的 Docker 项目】10 分钟搭建一个高大上的论坛程序 购买腾讯云轻量应用服务器 待补充 登录服务器 待补充 BBR 加速脚本 BBR 加速脚本: BASH cd /usr/src &…

Springboot3+vue3从0到1开发实战项目(一)

一. 可以在本项目里面自由发挥拓展 二. 知识整合项目使用到的技术 后端开发 &#xff1a; Validation, Mybatis,Redis, Junit,SpringBoot3 &#xff0c;mysql&#xff0c;Swagger, JDK17 &#xff0c;JWT&#xff0c;项目部署 前端开发&#xff1a; Vue3&#xff0c;Vite&am…

类和对象(4)——补充内容+DateOJ题

Date类型的OJ 一&#xff0c;static成员例题 二&#xff0c;DateOJ题一&#xff0c;[计算日期到天数转换](https://www.nowcoder.com/practice/769d45d455fe40b385ba32f97e7bcded?tpId37&&tqId21296&rp1&ru/activity/oj&qru/ta/huawei/question-ranking)1…

【阿里云】图像识别 智能分类识别 增加垃圾桶开关盖功能点和OLED显示功能点(二)

一、增加垃圾桶开关盖功能 环境准备 二、PWM 频率的公式 三、pthread_detach分离线程&#xff0c;使其在退出时能够自动释放资源 四、具体代码实现 图像识别数据及调试信息wget-log打印日志文件 五、增加OLED显示功能 六、功能点实现语音交互视频 一、增加垃圾桶开关盖功能…

Linux:创建进程 -- fork,到底是什么?

相信大家在初学进程时&#xff0c;对fork函数创建进程一定会有很多的困惑&#xff0c;比如&#xff1a; 1.fork做了什么事情?? 2.为什么fork函数会有两个返回值?3.为什么fork的两个返回值&#xff0c;会给父进程谅回子进程pid&#xff0c;给子进程返回0?4.fork之后:父子进…

Oracle SQL 注入上的 Django GIS 函数和聚合漏洞 (CVE-2020-9402)

漏洞描述 Django 于2020年3 月4日发布了一个安全更新&#xff0c;修复了 GIS 函数和聚合中的 SQL 注入漏洞。 参考链接&#xff1a; Django security releases issued: 3.0.4, 2.2.11, and 1.11.29 | Weblog | Django 该漏洞要求开发者使用 JSONField/HStoreField;此外&…