YOLOv8改进 | 2023 | MPDIoU、InnerMPDIoU助力细节涨点

论文地址:官方论文地址点击即可跳转

代码地址:官方并没有开源的该损失的函数的代码,我根据文章内容进行了复现代码块在第三章

 一、本文介绍

本文为读者详细介绍了YOLOv8模型的最新改进,带来的改进机制是最新的损失函数MPDIoU和融合了最新的Inner思想的InnerMPDIoU(效果打爆之前的所有的损失函数)提升检测精度和处理细节方面的作用。通过深入探讨MPDIoU和InnerMPDIoU(全网首发)的工作原理和实际代码实现,本文旨在指导读者如何将这些先进的损失函数技术应用到YOLOv8模型中,以提高其性能和准确性。文章内容涵盖从理论基础、代码实现,到实际教你如何添加本文的机制到你的模型中

  专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

实验效果图如下所示-> 

因为资源有限我发的文章都要做对比实验所以本次实验我只用了一百张图片检测的是安全帽训练了一百个epoch,该结果只能展示出该机制有效,但是并不能产生决定性结果,因为具体的效果还要看你的数据集和实验环境所影响。

分析下这个结果图片:最左面的是基础版本没做任何修改的,中间的只是修改了MPDIoU可以看到涨点相对于基础版本的大概有0.05个点左右,但是我增加了InnerMPDIoU的效果基本持平(我个人觉得是我的数据集原因)所以大家自己进行实验的时候可以多做一轮进行一下对比。 

目录

 一、本文介绍

二、MPDIoU的机制原理

三、MPDIoU的代码复现 

四、手把手教你添加MPDIoU到你的模型中 

 4.1 CARAFE的添加教程

五、全文总结


二、MPDIoU的机制原理

问题提出:文章指出,在目标检测和实例分割的过程中,传统的边界框回归(BBR)损失函数难以优化预测框和真实框在宽高比相同但具体尺寸不同时的情况,下面是描述现有的边界框回归的方法的计算因素总结(包括GIoU、DIoU、CIoU和EIoU)的计算因素。这些度量方法是用于评估和优化边界框回归模型性能的关键工具。虽然文章没有直接展示下图的内容,但它们包括以下几个方面:

  • GIoU(Generalized IoU):除了传统的IoU(交并比)之外,GIoU还考虑了边界框之间的包含关系和空间分布。

  • DIoU(Distance IoU):在IoU的基础上,DIoU还考虑了边界框中心点之间的距离,以改进对齐和尺度不一致的情况。

  • CIoU(Complete IoU):结合了DIoU的特点,并加入了宽高比的考虑,进一步提高了对边界框的精确度。

  • EIoU(Expected IoU):这是一种更高级的度量方法,考虑了预测边界框与真实边界框之间的预期相似度。

文章提出的MPDIoU是在这些现有度量方法的基础上发展起来的,旨在通过直接最小化预测框和真实框之间的关键点距离,提供一种易于实现的解决方案,用于计算两个轴对齐矩形之间的MPDIoU​

 

  

MPDIoU的提出:为了克服这一挑战,文章提出了一种新的边界框相似度度量方法——MPDIoU(Minimum Point Distance Intersection over Union)。MPDIoU是基于水平矩形的最小点距离来计算的,能够综合考虑重叠区域、中心点距离以及宽度和高度的偏差。

下图展示了两种不同的边界框回归结果情况。其中,绿色框代表真实的边界框而红色框代表预测的边界框。在这两种情况下,传统的损失函数(如GIoU、DIoU、CIoU和EIoU)计算出的损失值是相同的,但是使用MPDIoU方法计算出的损失值却有所不同。这说明传统方法在某些特定情况下可能无法区分不同的预测结果,而MPDIoU能更准确地反映预测框和真实框之间的差异。

这个发现突显了MPDIoU在处理边界框回归问题上的优势,尤其是在区分具有相同宽高比但不同尺寸或位置的边界框时。MPDIoU通过直接计算预测框和真实框之间的关键点距离,提供了更精确的损失度量方法。

LMPDIoU损失函数:基于MPDIoU的概念,文章定义了一种新的损失函数LMPDIoU。LMPDIoU的公式如下:

LMPDIoU=1-MPDIoU

这一公式表明LMPDIoU损失函数与MPDIoU的相似度成反比关系,即MPDIoU越高,LMPDIoU损失越低,这推动模型预测的边界框更加接近真实框。

公式推理:在下图展示了作者提出的LMPDIoU损失函数的各种因素。

这些因素包括如何在训练阶段通过最小化损失函数来使模型预测的边界框接近其真实边界框。具体来说,每个预测的边界框

B_{prd} = \left[ \begin{array}{c} x_{prd} \\ y_{prd} \\ w_{prd} \\ h_{prd} \end{array} \right]

通过最小化以下损失函数来逼近其真实边界框:

B_{gt} = [x_{gt}, y_{gt}, w_{gt}, h_{gt}]^T 

L = \min_{\Theta} L(B_{gt}, B_{prd} | \Theta) 

其中,B_{gt} 是真实边界框的集合,而 \Theta 是回归深度模型的参数。文章中提出的LMPDIoU损失函数公式为: 

LMPDIoU=1-MPDIoU

实验验证:通过在多个数据集(如PASCAL VOC、MS COCO和IIIT5k)上对YOLACT和YOLOv7等模型的训练和测试,文章验证了MPDIoU和LMPDIoU在实际应用中的有效性。实验结果显示,这种新的损失函数在多个方面优于传统的损失函数,尤其是在处理具有相似宽高比但不同尺寸的边界框时。

下面是一些检测效果对比图 

总结来说,文章通过引入MPDIoU和LMPDIoU(我又将其和Inner的思想结合了在一起形成了InnerMPDIoU双重提高了效果),提供了一种新的视角来优化目标检测中的边界框回归问题,同时通过实验验证了其在提高检测模型准确性方面的有效性。

三、MPDIoU的代码复现 

论文中不仅提出了MPDIoU还提出了一个LMPDIoU但是这个LMPDIoU我用了以后模型根本收敛不了,所以我不知道这是我数据集的原因还是其它原因导致的,但是MPDIoU我使用效果是非常好的,其中我还添加了Focus和Inner的思想, 如果你Inner和MPDIoU都设置为True使用的就是InnerMPDIoU,如果Inner为False但是MPDIoU设置为True就是MPDIoU,Focus同理,支持FocusInnerMPDIoU,所以大家可以多进行尝试。 

class WIoU_Scale:
    ''' monotonous: {
            None: origin v1
            True: monotonic FM v2
            False: non-monotonic FM v3
        }
        momentum: The momentum of running mean'''

    iou_mean = 1.
    monotonous = False
    _momentum = 1 - 0.5 ** (1 / 7000)
    _is_train = True

    def __init__(self, iou):
        self.iou = iou
        self._update(self)

    @classmethod
    def _update(cls, self):
        if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \
                                         cls._momentum * self.iou.detach().mean().item()

    @classmethod
    def _scaled_loss(cls, self, gamma=1.9, delta=3):
        if isinstance(self.monotonous, bool):
            if self.monotonous:
                return (self.iou.detach() / self.iou_mean).sqrt()
            else:
                beta = self.iou.detach() / self.iou_mean
                alpha = delta * torch.pow(gamma, beta - delta)
                return beta / alpha
        return 1

def bbox_iou(box1, box2, x1y1x2y2=True, ratio=1, GIoU=False, DIoU=False, CIoU=False, SIoU=False,
             EIoU=False, WIoU=False, MPDIoU=False, LMPDIoU=False, Inner=False, Focal=False, alpha=1, gamma=0.5,
             scale=False, eps=1e-7):
    if Inner:
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2

        # Inner-IoU      #Inner-IoU        #Inner-IoU        #Inner-IoU        #Inner-IoU        #Inner-IoU        #Inner-IoU
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_ * ratio, x1 + w1_ * ratio, \
                                                             y1 - h1_ * ratio, y1 + h1_ * ratio
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_ * ratio, x2 + w2_ * ratio, \
                                                             y2 - h2_ * ratio, y2 + h2_ * ratio
        inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
                      (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
        union = w1 * ratio * h1 * ratio + w2 * ratio * h2 * ratio - inter + eps

        iou = inter / union  # inner_iou

    else:
        # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
        box2 = box2.T
        # Get the coordinates of bounding boxes
        if x1y1x2y2:  # x1, y1, x2, y2 = box1
            b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
            b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
        else:  # transform from xywh to xyxy
            b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
            b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
            b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
            b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2

        # Intersection area
        inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
                (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)

        # Union Area
        w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
        w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
        union = w1 * h1 + w2 * h2 - inter + eps

        # IoU
        # iou = inter / union # ori iou
        iou = torch.pow(inter / (union + eps), alpha)  # alpha iou

    if scale:
        self = WIoU_Scale(1 - (inter / union))

    if CIoU or DIoU or GIoU or EIoU or SIoU or WIoU or MPDIoU or LMPDIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(
            b2_x1)  # convex (smallest enclosing box) width
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height
        if CIoU or DIoU or EIoU or SIoU or WIoU or MPDIoU or LMPDIoU:  # Distance or Complete IoU
            # https://arxiv.org/abs/1911.08287v1
            c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squared
            rho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (
                    b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2
            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
                with torch.no_grad():
                    alpha_ciou = v / (v - iou + (1 + eps))
                if Focal:
                    return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(
                        inter / (union + eps),
                        gamma)  # Focal_CIoU
                else:
                    return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoU
            elif MPDIoU:
                d1 = (b2_x1 - b1_x1) ** 2 + (b2_y1 - b1_y1) ** 2
                d2 = (b2_x2 - b1_x2) ** 2 + (b2_y2 - b1_y2) ** 2
                w = (b2_x2 - b2_x1)   # x2 - x1
                h = (b2_y2 - b2_y1)  # y2 - y1
                if Focal:
                    return iou - ((d1 + d2) / (w ** 2 + h ** 2)), torch.pow(inter / (union + eps), gamma)  # Focal_MPDIoU
                else:
                    return iou - ((d1 + d2)/(w ** 2 + h ** 2))
            elif LMPDIoU:
                d1 = (b2_x1 - b1_x1) ** 2 + (b2_y1 - b1_y1) ** 2
                d2 = (b2_x2 - b1_x2) ** 2 + (b2_y2 - b1_y2) ** 2
                w = (b2_x2 - b2_x1)   # x2 - x1
                h = (b2_y2 - b2_y1)  # y2 - y1
                if Focal:
                    return 1 - (iou - ((d1 + d2)/(w ** 2 + h ** 2))), torch.pow(inter / (union + eps), gamma)  # Focal_MPDIo  # MPDIoU
                else:
                    return 1 - (iou - ((d1 + d2) / (w ** 2 + h ** 2)))
            elif EIoU:
                rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2
                rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2
                cw2 = torch.pow(cw ** 2 + eps, alpha)
                ch2 = torch.pow(ch ** 2 + eps, alpha)
                if Focal:
                    return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(
                        inter / (union + eps),
                        gamma)  # Focal_EIou
                else:
                    return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)  # EIou
            elif SIoU:
                # SIoU Loss https://arxiv.org/pdf/2205.12740.pdf
                s_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + eps
                s_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + eps
                sigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)
                sin_alpha_1 = torch.abs(s_cw) / sigma
                sin_alpha_2 = torch.abs(s_ch) / sigma
                threshold = pow(2, 0.5) / 2
                sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)
                angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)
                rho_x = (s_cw / cw) ** 2
                rho_y = (s_ch / ch) ** 2
                gamma = angle_cost - 2
                distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)
                omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)
                omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)
                shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)
                if Focal:
                    return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(
                        inter / (union + eps), gamma)  # Focal_SIou
                else:
                    return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha)  # SIou
            elif WIoU:
                if Focal:
                    raise RuntimeError("WIoU do not support Focal.")
                elif scale:
                    return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp(
                        (rho2 / c2)), iou  # WIoU https://arxiv.org/abs/2301.10051
                else:
                    return iou, torch.exp((rho2 / c2))  # WIoU v1
            if Focal:
                return iou - rho2 / c2, torch.pow(inter / (union + eps), gamma)  # Focal_DIoU
            else:
                return iou - rho2 / c2  # DIoU

        c_area = cw * ch + eps  # convex area
        if Focal:
            return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(
                inter / (union + eps),
                gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdf
        else:
            return iou - torch.pow((c_area - union) / c_area + eps,
                                         alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdf
    if Focal:
        return iou, torch.pow(inter / (union + eps), gamma)  # Focal_IoU
    else:
        return iou  # IoU

四、手把手教你添加MPDIoU到你的模型中 

 4.1 CARAFE的添加教程

添加教程这里不再重复介绍、因为专栏内容有许多,添加过程又需要截特别图片会导致文章大家读者也不通顺如果你已经会添加注意力机制了,可以跳过本章节,如果你还不会,大家可以看我下面的文章,里面详细的介绍了拿到一个任意机制(C2f、Conv、Bottleneck、Loss、DetectHead)如何添加到你的网络结构中去。

本为提到损失函数里面也有详细版本的教程,再次强调一下使用方法:如果你Inner和MPDIoU都设置为True使用的就是InnerMPDIoU,如果Inner为False但是MPDIoU设置为True就是MPDIoU,Focus同理,还支持FocusInnerMPDIoU。 

添加教程->YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头

这里顺便推荐一下我之前的博客讲的是InnerIoU这个损失函数的思想我做了很多次实验都可以有效涨点,里面进行了详细的介绍大家有兴趣可以进行回顾。

InnerIoU回顾:YOLOv8改进 | 2023 | InnerIoU、InnerSIoU、InnerWIoU、FocusIoU等损失函数

五、全文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/186781.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Django必备知识点(图文详解)

目录 day02 django必备知识点 1.回顾 2.今日概要 3.路由系统 3.1 传统的路由 3.2 正则表达式路由 3.3 路由分发 小结 3.4 name 3.5 namespace 3.4 最后的 / 如何解决? 3.5 当前匹配对象 小结 4.视图 4.1 文件or文件夹 4.2 相对和绝对导入urls​编辑…

脏页刷新机制总结

1、Buffer Cache和Page Cache 一句话解释:Page Cache用于缓存文件的页数据,Buffer Cache用于缓存块设备(磁盘)的块数据。但由于磁盘都是由文件系统管理的,所以会导致数据会被缓存两次,因此现在Linux已经不再…

Python Web开发基础知识篇

一,基础知识篇 本片文章会简单地说一些python开发web中所必须的一些基础知识。主要包括HTML和css基础、JavaScript基础、网络编程基础、MySQL数据库基础、Web框架基础等知识。 1,Web简介 Web,全称为World Wide Web,也就是WWW,万…

mysql索引分为哪几类,聚簇索引和非聚簇索引的区别,MySQL索引失效的情况有哪几种情况,MySQL索引优化的手段,MySQL回表

文章目录 索引分为哪几类?聚簇索引和非聚簇索引的区别什么是[聚簇索引](https://so.csdn.net/so/search?q聚簇索引&spm1001.2101.3001.7020)?(重点)非聚簇索引 聚簇索引和非聚簇索引的区别主要有以下几个:什么叫回…

Leetcode103 二叉树的锯齿形层序遍历

二叉树的锯齿形层序遍历 题解1 层序遍历双向队列 给你二叉树的根节点 root ,返回其节点值的 锯齿形层序遍历 。(即先从左往右,再从右往左进行下一层遍历,以此类推,层与层之间交替进行)。 提示&#xff1a…

激光塑料透光率检测仪进行材料质量监控

焊接质量检测是对焊接成果的检测,目的是保证焊接结构的完整性、可靠性、安全性和使用性。焊接质量检测通常包括外观检验、内部检查、无损检测以及试件制作与送检等步骤。通过这些检测方法,可以全面评估焊接质量,确保其符合设计要求和规范标准…

2023.11.25-istio安全

目录 文章目录 目录本节实战1、安全概述2、证书签发流程1.签发证书2.身份认证 3、认证1.对等认证a.默认的宽容模式b.全局严格 mTLS 模式c.命名空间级别策略d.为每个工作负载启用双向 TLS 2.请求认证a.JWK 与 JWKS 概述b.配置 JWT 终端用户认证c.设置强制认证规则 关于我最后 本…

GoLang Filepath.Walk遍历优化

原生标准库在文件量过大时效率和内存均表现不好 1400万文件遍历Filepath.Walk 1400万文件重写直接调用windows api并处理细节 结论 1400万文件遍历时对比 对比条目filepath.walkwindows api并触发黑科技运行时间710秒22秒内存占用480M38M 关键代码 //超级快的文件遍历 fun…

GPS 定位信息分析:航向角分析及经纬度坐标转局部XY坐标

GPS 定位信息分析(1) 从下面的数据可知,raw data 的提取和经纬度的计算应该是没问题的 在相同的经纬度下, x 和 y 还会发生变化,显然是不正确的 raw data:3150.93331124 11717.59467080 5.3 latitude: 31.8489 long…

【Java】智慧工地云平台源码(APP+SaaS模式)

在谈论“智慧工地”之前,我们首先得知道传统工地为什么跟不上时代了。 说起传统工地,总有一些很突出的问题:比如工友多且杂,他们是否入场、身体状况如何,管理人员只能依靠巡查、手工纪录来判断,耗时耗力&am…

ctfshow sql

180 过滤%23 %23被过滤,没办法注释了,还可以用’1’1来闭合后边。 或者使用--%0c-- 1%0corder%0cby%0c3--%0c--1%0cunion%0cselect%0c1,2,database()--%0c--1%0cunion%0cselect%0c1,2,table_name%0cfrom%0cinformation_schema.tables%0cwhere%0ctable_…

多线程Thread(初阶三:线程的状态及线程安全)

目录 一、线程的状态 二、线程安全 一、线程的状态 1.NEW Thread:对象创建好了,但是还没有调用 start 方法在系统中创建线程。 2.TERMINATED: Thread 对象仍然存在,但是系统内部的线程已经执行完毕了。 3.RUNNABLE: 就绪状态&…

基于Python 中创建 Sentinel-2 RGB 合成图像

一、前言 下面的python代码将带您了解如何从原始 Sentinel-2 图像创建 RGB 合成图像的过程。 免费注册后,可以从 Open Access Hub 下载原始图像。 请注意,激活您的帐户可能需要 24 小时! 二、准备工作 (1)导入必要的库…

【Mybatis-Plus篇】Mybatis-Plus基本使用

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

跳转应用市场详情页market

关于作者:CSDN内容合伙人、技术专家, 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 ,擅长java后端、移动开发、商业变现、人工智能等,希望大家多多支持。 未经允许不得转载 目录 一、导读二、概览三、跳转到各大厂商应…

思科模拟器操作命令

模式 思科模拟器常见的模式有 用户模式 能够操作的命令比较少 特权模式特权模式下面可以操作的比较多 全局模式 接口模式 用户模式进入特权模式: 命令enable 特权模式进行全局模式命令: configure terminal 退出命令 exit命令:返回上一层,即一步一步…

Windows核心编程 进程间通信

目录 进程间通信概述 发送消息 WM_COPYDATA DLL共享段 文件映射 文件相关API CreateFile ReadFile WriteFile CloseHandle SetFilePointerEx 设置文件指针 获取文件大小 GetFileSize 结构体 LARGE_INTEGER 文件映射用于读写文件数据 文件映射用于进程间通信(带文…

百度搜索框中的下拉提示关键词提取

效果图 代码有点多,绑定资源了 导出excel如下 贴心养眼背景图鼠标点击小爱心

pat实现基于邻接矩阵表示的深度优先遍历

void DFS(Graph G, int v) {visited[v] 1;printf("%c ", G.vexs[v]);for (int i 0; i < G.vexnum; i) {if (!visited[i] && G.arcs[v][i]) DFS(G, i);} }

C# 读写FDX-B(ISO11784/85)动物标签源码

本示例使用的发卡器&#xff1a;EM4305 EM4469 ISO11784/85协议125K低频FXD-B动物标签读写发卡器-淘宝网 (taobao.com) using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using S…