【点云surface】 凹包重构

1 处理过程可视化 

原始数据

直通滤波过滤后

pcl::ProjectInliers结果

pcl::ExtractIndices结果

凹包结果

 

凸包结果

2 处理过程分析:

原始点云 ---> 直通滤波 --> pcl::SACSegmentation分割出平面 -->pcl::ProjectInliers投影 --> pcl::ConcaveHull凹包重构

2.1 有一个步骤可以被替换

pcl::ProjectInliers这步骤是将直通滤波过滤得到的结果,全部投影到pcl::SACSegmentation分割到的平面上。这一步可以用pcl::ExtractIndices代替,其直接提取属于平面的点云。替换后不影响后面的凹包重构结果

2.2 凹包与凸包的区别

凹包是最小外接,凸包是最大外接,详情可以看下面这篇博客

PCL计算ConvexHull凸包、ConcaveHull凹包_pcl::concavehull_com1098247427的博客-CSDN博客

3 凹包参数探究

该算法中有许多参数可设置:

  • setAlpha(double alpha):设置凹凸包计算的精细程度。alpha参数控制了计算凹凸包时使用的半径大小。较小的alpha值会产生更精细的凹凸包,而较大的alpha值会产生更粗糙的凹凸包。

  • setDimension(int dim):设置凹凸包计算的维度。dim参数指定了计算凹凸包的维度。默认值为3,表示计算三维凹凸包。如果输入点云是二维的,则可以将dim设置为2。

  • setKeepInformation(bool keep):设置是否保留输入点云的信息。如果将keep参数设置为true,则计算的凹凸包点云将保留输入点云的法线和曲率信息。如果设置为false,则不保留这些信息。

  • setAlphaMultiplier(double multiplier):设置alpha参数的乘数因子。multiplier参数用于调整alpha参数的值。默认值为1.0,表示使用alpha参数的原始值。

通常只需手动设置alpha参数,其控制了计算凹凸包时使用的半径大小。较小的alpha值会产生更精细的凹凸包,而较大的alpha值会产生更粗糙的凹凸包。

将alpha参数设置为0.01,得到:

4 代码

#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/filters/passthrough.h>
#include <pcl/filters/project_inliers.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/surface/concave_hull.h>
#include <pcl/visualization/cloud_viewer.h>

#include <pcl/surface/convex_hull.h>
#include <pcl/filters/extract_indices.h>

int main()
{
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>),
                                        cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>),
                                        cloud_projected(new pcl::PointCloud<pcl::PointXYZ>);

    pcl::PCDReader reader;
    reader.read("/home/lrj/work/pointCloudData/table_scene_mug_stereo_textured.pcd",*cloud);

    pcl::PassThrough<pcl::PointXYZ> pass;
    pass.setInputCloud(cloud);
    pass.setFilterFieldName("z");
    pass.setFilterLimits(0, 1.1);
    pass.filter(*cloud_filtered);
    std::cerr << "PointCloud after filtering has: "
              << cloud_filtered->size() << " data points.\n";

    pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
    pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
    pcl::SACSegmentation<pcl::PointXYZ> seg;
    seg.setOptimizeCoefficients(true);
    seg.setModelType(pcl::SACMODEL_PLANE);
    seg.setMethodType(pcl::SAC_RANSAC);
    seg.setDistanceThreshold(0.01);
    seg.setInputCloud(cloud_filtered);
    seg.segment(*inliers, *coefficients);
    std::cerr << "PointCloud after segmentation has: "
              << inliers->indices.size() << " inliers.\n";

    // 将点云投影到拟合的平面上
//    pcl::ProjectInliers<pcl::PointXYZ> proj;
//    proj.setModelType(pcl::SACMODEL_PLANE);
//    proj.setInputCloud(cloud_filtered);
//    proj.setModelCoefficients(coefficients);
//    proj.filter(*cloud_projected);
//    std::cerr << "PointCloud after projection has: "
//              << cloud_projected->size() << " data points.\n" << std::endl;

    // 直接提取属于平面点云
    pcl::ExtractIndices<pcl::PointXYZ> extract;
    extract.setInputCloud(cloud_filtered);
    extract.setIndices(inliers);
    extract.setNegative(false);
    extract.filter(*cloud_projected);

    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_hull (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::ConcaveHull<pcl::PointXYZ> chull;
    chull.setInputCloud(cloud_projected);
    chull.setAlpha(0.1);
    chull.reconstruct(*cloud_hull);
    std::cerr << "Concave hull has: " << cloud_hull->size()
              << " data points.\n" << std::endl;


    pcl::visualization::CloudViewer vis("cloud visualization");
    vis.showCloud(cloud_hull);

    while(!vis.wasStopped())
    {

    }

}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/186549.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

模板初阶(1):函数模板,类模板

一、函数模板 1.1 概念 函数模板代表了一个函数家族&#xff0c;该函数模板与类型无关&#xff0c;在使用时被参数化&#xff0c;根据实参类型产生函数的特定类型版本。 格式&#xff1a; template <typename T>或template <class T> template <class T>…

一起学docker系列之九docker运行mysql 碰到的各种坑及解决方法

目录 前言1 Docker 运行mysql命令2 坑一&#xff1a;无法读取/etc/mysql/conf.d目录的问题3 坑二&#xff1a;/tmp/ibnr0mis 文件无法创建/写入的问题4 坑三&#xff1a;Navicat 连接错误&#xff08;1045-access denied&#xff09;5 坑四&#xff1a;MySQL 登录失败问题结语 …

micro_ros

原文链接Supported Hardware | micro-ROS Supported Hardware The main targets of micro-ROS are mid-range 32-bits microcontroller families. Usually, the minimum requirements for running micro-ROS in an embedded platform are memory constraints. Since memory u…

Spring Boot - 瘦身大作战:优雅应对Spring Boot Fat Jar

文章目录 Fat Jar瘦身pom修改copy lib启动 -Dloader.path验证 源码分析前置阅读spring-boot-loader 依赖类继承关系PropertiesLauncher属性配置 附 pom.xml Fat Jar 【pom.xml】 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"ht…

支持Arm CCA的TF-A威胁模型

目录 一、简介 二、评估目标 2.1 假定 2.2 数据流图 三、威胁分析 3.1 威胁评估 3.1.1 针对所有固件镜像的一般威胁 3.1.2 引导固件可以缓解的威胁 3.1.3 运行时EL3固件可缓解的威胁 一、简介 本文针对支持Arm Realm Management Extension (RME)、实现Arm Confidentia…

【Amazon】安装卸载AWS CLI操作流程(Windows 、Linux系统)

AWS 命令行界面&#xff08;AWS CLI&#xff09;是用于管理 AWS 产品的统一工具。只需要下载和配置一个工具&#xff0c;您就可以使用命令行控制多个 AWS 产品并利用脚本来自动执行这些服务。 AWS CLI v2 提供了多项新功能&#xff0c;包括改进的安装程序、新的配置选项&#…

(Matalb分类预测)GA-BP遗传算法优化BP神经网络的多维分类预测

目录 一、程序及算法内容介绍&#xff1a; 基本内容&#xff1a; 亮点与优势&#xff1a; 二、实际运行效果&#xff1a; 三、部分代码&#xff1a; 四、本文代码数据说明手册分享 一、程序及算法内容介绍&#xff1a; 基本内容&#xff1a; 本代码基于Matalb平台编译&am…

NX二次开发UF_CURVE_ask_curve_inflections 函数介绍

文章作者&#xff1a;里海 来源网站&#xff1a;https://blog.csdn.net/WangPaiFeiXingYuan UF_CURVE_ask_curve_inflections Defined in: uf_curve.h int UF_CURVE_ask_curve_inflections(tag_t curve_eid, double proj_matrx [ 9 ] , double range [ 2 ] , int * num_infpt…

如何处理git多分支

本篇文章主要处理以下两种多分支问题 如何将自己在本地的修改上传到一个新的Git分支&#xff08;比如用于测试&#xff0c;不合并进main分支&#xff09;&#xff1f;如何在一个新的本地仓库拉取一个项目的非main分支&#xff0c;并处理他们关联关系&#xff1f; 1. 将自己在…

如何用低代码的思路设计文字描边渐变组件

前言 文字特效设计一直是困扰 Web 前端 Css 世界多年的问题, 比如如何用纯 Css 实现文字描边, 渐变, 阴影等, 由于受限于浏览器兼容性的问题, 我们不得不使用其他替代方案来实现. 平时工作中我们使用 PS 等设计工具能很容易的实现文字渐变等特效, 但是随着可视化技术的成熟, 我…

C语言进阶之路-基本数据小怪篇

目录 一、学习目标&#xff1a; 二、数据基本类型 整型 浮点型 / 实型 字符 字符串 布尔型数据 三、重要的杂七杂八知识点 常量与变量 标准输入 sizeof运算符&#xff1a; 类型转换 数据类型的本质 整型数据尺寸 可移植性整型 拿下第一个C语言程序 总结 一、学…

6 个有效且可用的顶级 Android 数据恢复工具

经过测试 42 种数据恢复软件产品&#xff0c;发现奇客数据恢复安卓版是 Android 设备的最佳选择。 过去几十年来&#xff0c;我一直在科技行业工作&#xff0c;经常帮助人们应对计算机灾难&#xff0c;包括丢失数据。 Android 数据恢复应用程序不在您的设备上运行&#xff0c…

长度最小的子数组

给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其总和大于等于 target 的长度最小的 连续子数组 [numsl, numsl1, …, numsr-1, numsr] &#xff0c;并返回其长度。如果不存在符合条件的子数组&#xff0c;返回 0 。 示例 1&#xff1a; 输入&#x…

【算法心得】When data range not large, try Bucket sort

https://leetcode.com/problems/maximum-number-of-coins-you-can-get/description/?envTypedaily-question&envId2023-11-24 I solve this problem by sorting piles first, and choose piles for(let i1;i<(piles.length/3)*2;i2) but: o(≧口≦)o Problem must …

[kingbase锁等待问题分析]

参考文章:https://www.modb.pro/db/70021 概述 为了确保复杂的事务可以安全地同时运行&#xff0c;kingbase&#xff08;PostgreSQL&#xff09;提供了各种级别的锁来控制对各种数据对象的并发访问&#xff0c;使得对数据库关键部分的更改序列化。事务并发运行&#xff0c;直到…

Ubuntu服务器/工作站常见故障修复记录

日常写代码写方案文档&#xff0c;偶尔遇上服务器出现问题的时候&#xff0c;也需要充当一把运维工程师&#xff0c;此帖用来记录服务器报错的一些解决方案&#xff0c;仅供参考&#xff01; 文章目录 一、服务器简介二、机箱拆解三、基本操作3.1 F2进入BIOS3.2 F12进入Boot Me…

基于Vue+SpringBoot的个人健康管理系统

项目编号&#xff1a; S 040 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S040&#xff0c;文末获取源码。} 项目编号&#xff1a;S040&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 健康档案模块2.2 体检档案模块2.3 健…

判断序列Series中的值是否都不一样 PandasSeries中的方法:is_unique()

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 判断序列Series中的值是否都不一样 PandasSeries中的方法&#xff1a; is_unique() 选择题 请问下列程序运行的的结果是&#xff1a; import pandas as pd s1 pd.Series([1,2,3]) print("…

Kafka 集群如何实现数据同步

Kafka 介绍 Kafka 是一个高吞吐的分布式消息系统&#xff0c;不但像传统消息队列&#xff08;RaabitMQ、RocketMQ等&#xff09;那样能够【异步处理、流量消峰、服务解耦】 还能够把消息持久化到磁盘上&#xff0c;用于批量消费。除此之外由于 Kafka 被设计成分布式系统&…

机器学习【02】在 Pycharm 里使用 Jupyter Notebook

只有 Pycharm 的 Professional 版才支持 Jupyter Notebook 本教程结束只能在pycharm中使用&#xff0c;下载的库在pycharm选中的虚拟环境中 ssh -L localhost:9999:localhost:8888 usernameip这句话每次都要用 准备 1.服务器安装jupyter sudo snap install jupyter2.在 Jup…