【计算机网络笔记】数据链路层——差错编码

系列文章目录

什么是计算机网络?
什么是网络协议?
计算机网络的结构
数据交换之电路交换
数据交换之报文交换和分组交换
分组交换 vs 电路交换
计算机网络性能(1)——速率、带宽、延迟
计算机网络性能(2)——时延带宽积、丢包率、吞吐量/率
计算机网络体系结构概念
OSI参考模型基本概念
OSI参考模型中非端-端层(物理层、数据链路层、网络层)功能介绍
OSI参考模型中端-端层(传输层、会话层、表示层、应用层)功能介绍
TCP/IP参考模型基本概念,包括五层参考模型
网络应用的体系结构
网络应用进程通信
网络应用对传输服务的需求
Web应用之HTTP协议(涉及HTTP连接类型和HTTP消息格式)
Cookie技术
Web缓存/代理服务器技术
传输层服务概述、传输层 vs. 网络层
传输层——多路复用和多路分用
传输层——UDP简介
传输层——可靠数据传输原理之Rdt协议
传输层——可靠数据传输之流水线机制与滑动窗口协议
传输层——TCP特点与段结构
传输层——TCP的可靠数据传输
TCP连接管理(图解三次握手和四次挥手)
传输层——拥塞控制原理与解决方法
TCP的拥塞控制机制
网络层服务与核心功能
网络层服务模型——虚电路网络
网络层服务模型——数据报网络
Internet网络的网络层——IP协议之IP数据报的结构
IP分片
IP编址与有类IP地址
IP子网划分与子网掩码
CIDR与路由聚合
DHCP协议
网络地址转换(NAT)
ICMP(互联网控制报文协议)
IPv6简介
路由算法之链路状态路由算法
路由算法之距离向量路由算法
路由算法之层次路由
数据链路层概述


  • 系列文章目录
  • 差错编码
  • 奇偶校验码
  • Internet校验和(Checksum)
  • 循环冗余校验码(CRC)


差错编码

差错编码是差错检测和纠正的基础。它的基本原理是在数据基础上增加冗余信息,这个冗余信息建立起了数据比特之间原本不存在的关联关系。接收端收到数据之后判断关联关系是否存在。这种流程其实只是一类差错编码。当然,差错编码不能保证100%可靠。

在这里插入图片描述

  • D→DR,其中R为差错检测与纠正比特(冗余比特)

差错编码可分为检错码纠错码

  • 对于检错码,如果编码集的汉明距离ds =r+1,则该差错编 码可以检测r位的差错。汉明距离就是两个码字的比特数不一样的个数。编码集的汉明距离就是这个编码集中任意两个码字的汉明距离的最小值。

    • 例如,编码集 {0000,0101,1010,1111} 的汉明距离ds=2,可以 100%检测1比特差错
  • 对于纠错码,如果编码集的汉明距离ds=2r+1,则该差错 编码可以纠正r位的差错

    • 例如,编码集 {000000,010101,101010,111111} 的汉明距离ds=3 ,可以纠正1比特差错,如100010纠正为101010

下面介绍几个常见的差错编码:

奇偶校验码

  • 1比特校验位: 检测奇数位差错。所以检错能力是50%。

在这里插入图片描述

  • 二维奇偶校验:将数据组织成二维矩阵形式,在每一行和每一列都增加一个校验位。如果行和列都满足偶校验就是二维偶校验,如果都满足奇校验就是二维奇校验。能够检测奇数位差错、部分偶数位差错,也能够纠正同一行/列的奇数位错

在这里插入图片描述

Internet校验和(Checksum)

发送端:

  • 将“数据”(校验内容) 划分为16位的二进制 “整数”序列
  • 求和(sum):补码求和 (最高位进位的“1”, 返回最低位继续加)
  • 校验和(Checksum): sum的反码
  • 放入分组(UDP、TCP 、IP)的校验和字段

接收端:

  • 与发送端相同算法计算
  • 计算得到的"checksum":
    • 为16位全0(或sum为16位 全1):无错
    • 否则:有错

循环冗余校验码(CRC)

  • 检错能力更强大

  • 将数据比特D,视为一个二进制数

  • 选择一个r+1位的比特模式 (生成比特模式),G

  • 目标:选择r位的CRC比特,R,满足

    • <D,R>刚好可以被G整除(模2)
    • 接收端检错:利用G除<D,R>,余式全0,无错;否则,有错
    • 可以检测所有突发长度小于r+1位差错
  • 广泛应用于实际网络 (以太网,802.11 WiFi,ATM)

这样的过程可以概括为下面的式子:

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/186483.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

RK3588平台 USB框架与USB识别流程

一.USB的基本概念 在最初的标准里&#xff0c;USB接头有4条线&#xff1a;电源&#xff0c;D-,D,地线。我们暂且把这样的叫做标准的USB接头吧。后来OTG出现了&#xff0c;又增加了miniUSB接头。而miniUSB接头则有5条线&#xff0c;多了一条ID线,用来标识身份用的。 热插拔&am…

VR全景展示,“超前点播”打开娱乐行业线上营销门户

如今&#xff0c;人们的生活水平正在逐步提高&#xff0c;这种提高不仅仅是体现在衣食住行上&#xff0c;更多方面是体现在大众的娱乐活动上。我们可以看到&#xff0c;相比于过去娱乐种类的匮乏&#xff0c;现如今&#xff0c;各种娱乐活动可谓是百家争鸣&#xff0c;例如温泉…

03.依赖倒置原则(Dependence Inversion Principle)

概述 高层模块不应依赖低层模块&#xff0c;二者都应该依赖其抽象。而抽象不应依赖细节&#xff0c;细节应该依赖抽象。依赖倒置原则的中心思想其实就是面向接口编程。 相对于细节的多变性&#xff0c;抽象的东西会稳定的多&#xff0c;所以以抽象为基础搭建的架构自然也会比以…

最新Midjourney绘画提示词Prompt教程无需魔法

最新Midjourney绘画提示词Prompt教程无需魔法使用 一、AI绘画工具 SparkAi【无需魔法使用】&#xff1a; SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作ChatGPT&#xff1f;小编这里写一个详细图文教程吧&#xff01;本系统使用NestjsVueTypes…

App 设计工具

目录 说明 打开 App 设计工具 示例 创建 App 创建自定义 UI 组件 打开现有 App 文件 打包和共享 App 本文主要讲述以交互方式创建 App。 说明 App 设计工具是一个交互式开发环境&#xff0c;用于设计 App 布局并对其行为进行编程。 可以使用 App 设计工具&#xff1a…

Python---函数的参数类型

位置参数 理论上&#xff0c;在函数定义时&#xff0c;我们可以为其定义多个参数。但是在函数调用时&#xff0c;我们也应该传递多个参数&#xff0c;正常情况&#xff0c;其要一一对应。 相关链接&#xff1a;Python---函数的作用&#xff0c;定义&#xff0c;使用步骤&…

1、postman的安装及使用

一、安装、登录 1.安装 下载地址 2.注册登录&#xff08;保存云服务进度&#xff09; 二、界面介绍 三、执行接口测试页面 请求页签&#xff1a; 1、params&#xff1a;当是get请求时&#xff0c;通过params传参 2、authorization&#xff1a;鉴权 3、headers&#xff1…

Ps:画笔工具的基本操作

画笔工具 Brush Tool是 Ps 中最常用的工具&#xff0c;广泛地用于绘画与修饰工作。 虽然多数操作可在画笔工具的工具选项栏中选择执行&#xff0c;但是如果能记住相应的快捷键可大大提高工作效率。 熟练掌握画笔工具的操作对于使用其他工具也非常有益&#xff0c;因为 Ps 中许多…

超声波雪深传感器冬季里的科技魔法

在冬季的某个清晨&#xff0c;当你打开大门&#xff0c;被厚厚的积雪覆盖的大地映入眼帘&#xff0c;你是否曾想过&#xff0c;这片雪地的深度是多少&#xff1f;它又如何影响着我们的生活和环境&#xff1f;今天&#xff0c;我们将为你揭开这个谜团&#xff0c;介绍一款神秘的…

2023/11/24JAVAweb学习

age只会执行成立的,show其实都展示了,通过display不展示 使用Vue,必须引入Vue.js文件 假如运行报错,以管理员身份打开vscode,再运行 ------------------------------------------------------------------- 更改端口号

【web】Fastapi自动生成接口文档(Swagger、ReDoc )

简介 FastAPI是流行的Python web框架&#xff0c;适用于开发高吞吐量API和微服务&#xff08;直接支持异步编程&#xff09; FastAPI的优势之一&#xff1a;通过提供高级抽象和自动数据模型转换&#xff0c;简化请求数据的处理&#xff08;用户不需要手动处理原始请求数据&am…

web前端开发基础----标准流布局和非标准流布局

1&#xff0c;标准流布局 标准流&#xff0c;也称文档流或普通流&#xff0c;是所有元素默认的布局方式。 在标准流中&#xff0c;元素按照其在 HTML 中出现的顺序&#xff0c;自上而下依次排列&#xff0c;并占据其父容器内的可用空间。 标准流中的元素按照其自然尺寸和位置进…

系列二、IOC DI

一、IOC 1.1、概述 IOC的中文意思是控制反转&#xff0c;通俗地讲就是把创建对象的控制权交给Spring去管理&#xff0c;以前是由程序员自己去创建、控制对象&#xff0c;现在交由Spring去创建对象 & 管理对象&#xff08;维系对象之间的关系&#xff09;&#xff0c;使用I…

Zynq-Linux移植学习笔记之67- 国产ZYNQ上通过GPIO模拟MDC/MDIO协议

1、背景介绍 模块上有9个PHY&#xff0c;其中两个PHY通过ZYNQ PS端的MDIO总线连接&#xff0c;其余7个PHY单独通过GPIO进行控制&#xff0c;需要实现GPIO模拟MDC/MDIO协议。 2、vivado工程设计 vivado工程内为每个PHY建立两个GPIO IP核&#xff0c;分别用来代表MDC和MDIO&…

Arduino库之 LedControl 库说明文档

LedControl 库最初是为基于 8 位 AVR 处理器的 Arduino 板编写的。用于通过MAX7219芯片控制LED矩阵和7段数码管。但由于该代码不使用处理器的任何复杂的内部功能&#xff0c;因此具有高度可移植性&#xff0c;并且应该在任何支持 和 功能的 Arduino&#xff08;类似&#xff09…

​3ds Max插件CG MAGIC图形板块为您提升线条效率!

​通过3ds Max软件进行绘图操作时&#xff0c;大多绊住各位设计师们作图速度的往往都是一些细微的琐事&#xff0c;重复一变一变的调整修改等问题。 今天说到这个绘图线条来回调整解决方法就是3ds Max插件CG MAGIC。 Max插件CG MAGIC作为一款智能化的辅助插件&#xff0c;致力于…

DS图_传递信息

Description 小明在和他的小伙伴们玩传消息游戏&#xff0c;游戏规则如下&#xff1a; 1. 有n名玩家&#xff0c;所有玩家编号分别为0~n-1&#xff0c;其中小明编号为0&#xff1b; 2. 每个玩家都有固定的若干个可传信息的其他玩家(也可能没有)。传消息的关系是单向的(即&am…

探究Kafka原理-3.生产者消费者API原理解析

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱吃芝士的土豆倪&#xff0c;24届校招生Java选手&#xff0c;很高兴认识大家&#x1f4d5;系列专栏&#xff1a;Spring源码、JUC源码、Kafka原理&#x1f525;如果感觉博主的文章还不错的话&#xff0c;请&#x1f44…

HBase数据模型杂谈

1.概述 HBase是一个稀疏、多维度、排序的映射表&#xff0c;这张表的索引是行键、列族、列限定符和时间戳。 每个值是一个未经解释的字符串&#xff0c;没有数据类型。用户在表中存储数据&#xff0c;每一行都有一个可排序的行键和任意多的列。表在水平方向由一个或者多个列族…

01_原理-事件循环

01_原理-事件循环 文章目录 01_原理-事件循环一、浏览器的进程模型①&#xff1a;何为进程&#xff1f;②&#xff1a;何为线程&#xff1f;③&#xff1a;浏览器有哪些进程和线程&#xff1f; 二、渲染主线程是如何工作的&#xff1f;三、若干解释①&#xff1a;何为异步&…