基于食肉植物算法优化概率神经网络PNN的分类预测 - 附代码

基于食肉植物算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于食肉植物算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于食肉植物优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用食肉植物算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于食肉植物优化的PNN网络

食肉植物算法原理请参考:https://blog.csdn.net/u011835903/article/details/125921790

利用食肉植物算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

食肉植物参数设置如下:

%% 食肉植物参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述

从结果来看,食肉植物-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/185871.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

cineSync 3.3新功能: 深入iconik集成、激光工具、OTIOZ支持等

cineSync 3.3为大家带来了灵活性和精准度,使连接审阅会话与iconik中的媒体管理和存储更加容易,并且引入了颜色配置文件以快速测试颜色配置,还有通过激光指针等新工具带来新的可能性。 在ftrack,我们意识到当今的远程创意工作流比以…

【Java 进阶篇】Jedis:让Java与Redis轻松对话的利器

在现代软件开发中,缓存系统是提高系统性能的常见手段之一,而Redis作为一个高性能的缓存数据库,被广泛应用于各类系统。如果你是Java开发者,那么使用Jedis库可以让你轻松地与Redis进行交互。本文将带你深入了解Jedis的快速入门&…

智能优化算法 | Matlab实现金豺优化算法(GJO)(内含完整源码)

文章目录 效果一览文章概述源码设计参考资料效果一览 文章概述 智能优化算法 | Matlab实现金豺优化算法(GJO)(内含完整源码) 源码设计 %%clear clc close SearchAgents_no=30; % Number of search agents Max_iteration=1000

excel自己记录

1、清除换行符号 2、添加特殊符号&并清除换行符号 7日&15日&30日&60日 3、判断单元格最后一个字符是不是数字,不是就删掉 IF(ISNUMBER(--RIGHT(B2,1)),B2,SUBSTITUTE(B2,RIGHT(B2,1),"")) ISNUMBER(--RIGHT(B2,1))判断最右边的一个数是否…

git本地账户如何从一台电脑迁移到另外一台

为了表述方便,我们此处用旧电脑、新电脑指代。 在新电脑上安装git 例如,我旧电脑上安装的git版本是2.33.1版本,新电脑安装git的版本是2.43.0,这不妨碍迁移。 将git的全局配置文件从旧电脑拷贝到新电脑 Git的全局配置文件&…

NeurIPS 2023|AI Agents先行者CAMEL:第一个基于大模型的多智能体框架

AI Agents是当下大模型领域备受关注的话题,用户可以引入多个扮演不同角色的LLM Agents参与到实际的任务中,Agents之间会进行竞争和协作等多种形式的动态交互,进而产生惊人的群体智能效果。本文介绍了来自KAUST研究团队的大模型心智交互CAMEL框…

C#,《小白学程序》第七课:列表(List)其一,编制《高铁车次信息表》

1 文本格式 /// <summary> /// 车站信息类 class /// </summary> public class Station { /// <summary> /// 编号 /// </summary> public int Id { get; set; } 0; /// <summary> /// 车站名 /// </summary>…

新手如何买卖可转债,可转债投资基础入门

一、教程描述 什么是可转债&#xff1f;可转债是可转换债券的二次简称&#xff0c;原始全称是可转换公司债券&#xff0c;这是一种可以在特定时间、按特定条件&#xff0c;转换为普通股票的特殊企业债券&#xff0c;可转换债券兼具债权和股权的特征&#xff0c;其英文为conver…

MindStudio学习一 整体介绍

一场景介绍 二 安装介绍 1.LINUX 采用无昇腾硬件采用linux 分部署 2.WINDOWS 3.linux下安装整体步骤 3.1安装依赖 3.2 安装步骤 1.gcc cmake 等依赖 2.python3.7.5 3.pip 安装依赖 4.安装JDK 5.安装 Ascend-cann-toolkit 6.解压安装Mindstudio 7.进入bin路径 ./…

卷积神经网络(Inception V3)识别手语

文章目录 一、前言二、前期工作1. 设置GPU&#xff08;如果使用的是CPU可以忽略这步&#xff09;2. 导入数据3. 查看数据 二、数据预处理1. 加载数据2. 可视化数据3. 再次检查数据4. 配置数据集 三、构建Inception V3网络模型1.自己搭建2.官方模型 五、编译六、训练模型七、模型…

腾讯云云服务器旗舰新品SA5重磅首发

近日&#xff0c;腾讯云云服务器CVM再升级&#xff0c;极具性价比的云服务器旗舰新机型SA5重磅发布&#xff0c;搭载第四代AMD EPYC处理器&#xff08;Bergamo&#xff09;&#xff0c; 相比云服务器SA3实例&#xff0c;整机性能最大提升120%以上。 温馨提醒&#xff1a;购买腾…

Interactive Visual Data Analysis

Words&Contents Home | Interactive Visual Data Analysis Book Outline 这本书对视觉、互动和分析方法进行了系统而全面的概述&#xff0c;作为数据可视化方面比较好的读物&#xff1b; 目录 Words&Contents Book Outline &#xff08;一&#xff09;Introduct…

Linux 家目录和根目录

摘要&#xff1a; 在 Linux 操作系统中&#xff0c;家目录和根目录是两个非常重要的概念。它们是 Linux 文件系统中的两个关键节点&#xff0c;为用户和系统进程提供存储、管理和访问文件和目录的接口。本文旨在深入探讨和理解这两个目录的结构、功能和使用方式&#xff0c;同时…

力扣刷题篇之排序算法

系列文章目录 前言 本系列是个人力扣刷题汇总&#xff0c;本文是排序算法。刷题顺序按照[力扣刷题攻略] Re&#xff1a;从零开始的力扣刷题生活 - 力扣&#xff08;LeetCode&#xff09; 这个之前写的左神的课程笔记里也有&#xff1a; 左程云算法与数据结构代码汇总之排序&am…

OpenCV快速入门:特征点检测与匹配

文章目录 前言一、角点检测1.1 角点特征1.1.1 角点特征概念1.1.2 角点的特点1.1.3 关键点绘制代码实现1.1.4 函数解析 1.2 Harris角点检测1.2.1 Harris角点检测原理1.2.2 Harris角点检测公式1.2.3 代码实现1.2.4 函数解析 1.3 Shi-Tomasi角点检测1.3.1 Shi-Tomasi角点检测原理1…

typora中的快捷键shift enter 和 enter的交换

1 问题&#xff1a; 我最近在用 typora 进行写作&#xff0c;但是在合格 typora 的 markdown 编辑器很奇怪&#xff0c;它的一个回车符是两次换行&#xff0c;而用 shfit ent 找了半天都不知道怎么解决的这个问题&#xff0c;然后我就去了这个 typora 在 github 开源的问题仓库…

改进YOLOv8 | YOLOv5系列:RFAConv续作,即插即用具有任意采样形状和任意数目参数的卷积核AKCOnv

RFAConv续作,构建具有任意采样形状的卷积AKConv 一、论文yolov5加入的方式论文 源代码 一、论文 基于卷积运算的神经网络在深度学习领域取得了显著的成果,但标准卷积运算存在两个固有缺陷:一方面,卷积运算被限制在一个局部窗口,不能从其他位置捕获信息,并且其采样形状是…

C#,《小白学程序》第四课:数学计算,总和与平均值

程序是 数据 计算 显示。 1 文本格式 /// <summary> /// 《小白学程序》第四课&#xff1a;数学计算 /// 这节课超级简单&#xff0c;就是计算成绩的平均值&#xff08;平均分&#xff09; /// 这个是老师们经常做的一件事。 /// </summary> /// <param name&…

甲烷产生及氧化

温室气体排放被认为是加速气候变化的重要因素&#xff0c;甲烷(CH4)是仅次于二氧化碳(CO2)的重要温室气体&#xff0c;其百年温室效应潜势是CO2的28倍[1-2]。湿地中的CH4由产甲烷古菌在水体底部或沉积层严格厌氧环境下产生并释放进入水体&#xff0c;产生的CH4向上覆水运输过程…

力扣236. 二叉树的最近公共祖先(java DFS解法)

Problem: 236. 二叉树的最近公共祖先 文章目录 题目描述思路解题方法复杂度Code 题目描述 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为&#xff1a;“对于有根树 T 的两个节点 p、q&#xff0c;最近公共祖先表示为一个节点 x&am…