三分钟快速理解 ChatGPT 背后的大模型技术

在过去的十年中,人工智能领域取得了重大突破,其中自然语言处理(NLP)是其重要子领域之一。NLP使用的模型之一是大型语言模型(LLMs)。LLMs被设计用于处理大量文本数据,采用先进的神经网络架构,学习自然语言中单词、短语和概念之间的模式和关系。这意味着它们具有理解单词和短语背后上下文和含义的能力。因此,LLMs已成为各种NLP应用的关键工具。

ChatGPT是OpenAI团队开发的聊天机器人,是LLM的一个例子。近年来,由于其生成类似人类文本的能力,它受到了很多关注。

如果你想深入了解自然语言处理(NLP)的运作方式,可以学习如何使用Python编写代码。专家推崇Python作为NLP、机器学习和神经网络连接的最佳语言之一。R编程语言在研究人员和开发者中也颇受欢迎,特别是在处理大型语言模型的项目中。这两种语言都提供了丰富的库,帮助你掌握机器学习的基础知识。接下来,我们将详细探讨大型语言模型(LLMs)的工作原理。

LLMs的工作原理是怎样的呢?

LLMs的工作原理是通过接收大量文本数据,进行处理并学习单词和模式之间的关系。在理解了句子含义后,它们可以根据所接收的训练数据生成自己的句子。这些数据来源广泛,包括文章、博客、新闻网站和期刊等。由于其处理的数据庞大,它能够从给定的文本中提取模式,生成类似人类的文本。这是人类无法做到的,因为我们的记忆和处理能力有限。而计算机则能够存储和处理大量数据。

该模型本身通过由连接节点构成的神经网络运作,使其能够模拟自然语言中单词和短语之间的关系。训练数据充当了该模型的输入,输出的质量将取决于其训练数据的质量。以ChatGPT-3为例,它分析来自互联网的对话数据,如Reddit论坛上的对话。此外,还有人类训练员进行微调,通过对数据的质量和相关性提供反馈。LLM的工作方式类似于儿童学习语言的方式;当一个儿童置身于每个人都在说同一种语言的环境中时,他将学习并模仿周围人的言语行为。如果该儿童还得到一位教师的指导,教师对他产生的句子提供反馈,他将学会准确地产生那种语言的句子。

LLMs有哪些应用?

LLMs在各种领域中以多种方式被应用,其中一些包括:

  • 语言翻译:LLMs可以迅速将一种语言的单词翻译成另一种语言。它通过比较两种语言,尝试通过所谓的平行语料库逐句进行翻译。LLM采用两种方式进行翻译,一是直接翻译,二是编码器-解码器翻译。这两种技术都采用深度学习方法。
  • 内容创作:LLMs生成的输出可用作产品的文本内容,例如文章、产品描述、宣传册和其他类型的书面内容。ChatGPT是一款出色的工具,可以生成质量高且难以与人类创作的内容区分的文本。如果你的工作包括为用户编写内容,考虑使用这个工具。
  • 聊天机器人:LLMs的一个主要应用是用于聊天机器人。许多公司已经将ChatGPT作为客户支持聊天机器人工具的一部分,通过提供准确的回应来最大程度地为客户提供服务。科技领导者还在考虑通过提供相关的内部数据来开发适应其业务需求的语言模型。
  • 总结:一些LLM可以通过生成更短的版本来概括长文章,而不会影响其预期的信息。ChatGPT通过收集提交给Reddit的帖子,并附有人工编写的摘要来实现这一点。然后,训练人员对摘要进行微调,使模型通过强化学习的过程生成高质量的摘要。

应用LLM的领域

根据前面提到的应用,LLM目前在以下领域中得到了应用:

  • 科技企业:科技企业中的重要组成部分是与客户进行交流。科技行业的管理者和领导已经在寻找通过ChatGPT简化与客户沟通流程的方式。此外,LLM还可以用于为企业撰写内容,如产品描述、使命宣言和其他书面文本。在科技领域,它还可用于编写代码,为寻找高效编写和维护代码方式的程序员提供帮助,他们可以使用ChatGPT分析现有代码库或要求其编写常见脚本。这在过去几年中已经成为可能。
  • 医疗保健:在医疗保健领域,LLM可以以多种引人入胜的方式使用。其中一个用例是通过在大量基因组数据上进行训练,然后利用其生成新的序列,从而预测病毒变种。其他方式包括使用LLM来诊断健康问题,进而确定潜在的治疗方法。通过查看大量医疗数据,这使得医学诊断更加准确,最终挽救生命。LLM有潜力彻底改变医疗保健行业。
  • 零售业:零售业也可以通过使用LLM获益。一种使用方式是帮助企业更好地了解客户行为和偏好。通过分析客户数据,如搜索查询和在线互动,LLM可以提供关于客户寻找什么产品和服务,以及他们更喜欢如何与企业互动的见解。这些信息可用于优化营销活动、个性化客户体验,并做出更明智的业务决策。

LLM中的挑战是什么?

机器学习模型,包括LLM,只能与其提供的训练数据一样好。这意味着如果你用低质量的数据训练它,它将产生低质量的输出。在利害关系很大且不能容忍错误的情况下,这可能会成为一个问题。尽管什么构成低质量或高质量的数据可能是主观的,但高质量数据的一些特征包括准确性、相关性和多样性。低质量数据的特征包括不完整、偏见和不准确。

为了确保数据的高质量,需要人类训练员进行监督和调整。另一个问题是扩展和维护大量数据可能会面临困难和高昂的费用。目前,大部分LLM的工作是由研究人员完成的,并由有足够资源的大公司支持。

近来,ChatGPT因其产生带有偏见的内容而受到批评,原因是据称训练数据中存在固有的偏见。另一个合理的担忧是恶意行为者如何将其用于恶意目的,比如生成内容以散布虚假信息或宣传,以影响公众舆论。

这对我们来说意味着什么呢?

现在你已经了解了大语言模型的工作方式,或许你想知道这对你有什么影响。近年来,大语言模型取得了显著的进展,专家们普遍认为这将改变未来我们之间的交流方式。

随着未来将会有许多人工智能的机遇,你可能希望了解它的运作方式,以及如何部署和创建模型。用于机器学习模型的最流行的语言是Python,因为它拥有像Keras和Tensorflow这样的库,可用于创建神经模型。目前已经有许多人工智能的应用,包括图像处理,未来还将有更多应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/185800.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Spring】MyBatis的操作数据库

目录 一,准备工作 1.1 创建工程 1.2 准备数据 1.3 数据库连接字符串 1.4 创建持久层接口UserInfoMapper 1.5 单元测试 二,注解的基础操作 2.1 打印日志 2.2 参数传递 2.3 增(Insert) 2.4 删(Delete&#x…

[网鼎杯 2020 朱雀组]phpweb

看一下源码 应该是输入的date 作为函数,value作为内部参数的值,将date()函数返回的结果显示在页面上 回去看的时候,意外发现页面有了新的跳转,观察一下发现,页面每隔五秒就会发生一次跳转 所以就抓包看看 抓包发现po…

【TL431+场效应管组成过压保护电路】2022-3-22

缘由这个稳压三极管是构成的电路是起到保护的作用吗?-硬件开发-CSDN问答

《数据结构、算法与应用C++语言描述》-代码实现散列表(线性探查与链式散列)

散列表 完整可编译运行代码:Github:Data-Structures-Algorithms-and-Applications/_22hash/ 定义 字典的另一种表示方法是散列(hashing)。它用一个散列函数(也称哈希函数)把字典的数对映射到一个散列表&#xff08…

IO口速度影响了什么?

我们在初学单片机的时候都知道单片机GPIO的作用是巨大的,在配置GPIO的时候,结构体初始化里有一个选项是配置输入输出速度的,对于这个速度输出是必须要配置的,输入没有明令说明需不需要配置。 这个速度对于学习过32单片机的都应该知…

jQuery 第十一章(表单验证插件推荐)

文章目录 前言jValidateZebra FormjQuery.validValValidityValidForm BuilderForm ValidatorProgressionformvalidationjQuery Validation PluginjQuery Validation EnginejQuery ValidateValidarium后言 前言 hello world欢迎来到前端的新世界 😜当前文章系列专栏&…

C++模拟如何实现vector的方法

任意位置插入,insert的返回值为新插入的第一个元素位置的迭代器;因为插入可能会进行扩容,导致start的值改变,所以先定义一个变量保存pos与start的相对位置;判断是否需要扩容;从插入位置开始,将所…

沉头孔和埋头孔的区别

埋头空和沉头孔的区别在于螺栓孔上部扩孔:沉头孔是直筒结构;埋头孔是四十五度结构,比沉头孔较为平顺。 螺栓孔上部扩孔能容纳螺栓头部,使螺头部不高于周围表面。埋头空和沉头孔只是两种不同的叫法。 沉头孔是 PCB 上的圆柱形凹槽…

AIGC 3D即将爆发,混合显示成为产业数字化的生产力平台

2023年,大语言模型与生成式AI浪潮席卷全球,以文字和2D图像生成为代表的AIGC正在全面刷新产业数字化。而容易为市场所忽略的是,3D图像生成正在成为下一个AIGC风口,AIGC 3D宇宙即将爆发。所谓AIGC 3D宇宙,即由文本生成3D…

C语言——从终端(键盘)将 5 个整数输入到数组 a 中,然后将 a 逆序复制到数组 b 中,并输出 b 中 各元素的值。

#define _CRT_SECURE_NO_WARNINGS 1#include<stdio.h> int main() {int i;int a[5];int b[5];printf("输入5个整数&#xff1a;\n");for(i0;i<5;i){scanf("%d",&a[i]);}printf("数组b的元素值为&#xff1a;\n");for(i4;i>0;i--…

最近iphone手机的交管12123闪退,打不开的解决办法?

苹果手机系统和新版软件不配&#xff0c;终极决绝办法&#xff1a;升级IOS系统就好 可能是手机的内存不足了&#xff0c;因为在使用APP时&#xff0c;需要占用手机的内存&#xff0c;如果手机内存不足以支持软件允许&#xff0c;软件就会闪退。车主可以清理一下手机的内存&…

第一百七十八回 介绍一个三方包组件:SlideSwitch

文章目录 1. 概念介绍2. 使用方法3. 代码与效果3.1 示例代码3.2 运行效果 4. 内容总结 我们在上一章回中介绍了"如何创建垂直方向的Switch"相关的内容&#xff0c;本章回中将 介绍SlideSwitch组件.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍 我们…

插件预热 | 且看安全小白如何轻松利用Goby插件快速上分

001 前言 各位师傅们好&#xff0c;首先强调一遍我可没做坏事&#xff0c;我只是想学技术&#xff0c;我有什么坏心思呢 回到正题&#xff0c;作为一个初学者&#xff0c;我想和大家分享一下我是如何利用 Goby 进行刷分的经历。大家都知道&#xff0c;刚开始学习的时候&…

C语言之strstr函数的使用和模拟实现

C语言之strstr函数的模拟实现 文章目录 C语言之strstr函数的模拟实现1. strstr函数的介绍2. strstr函数的使用3. strstr的模拟实现3.1 实现思路3.2 实现代码 1. strstr函数的介绍 函数声明如下&#xff1a; char * strstr ( const char * str1, const char * str2 ); strs…

<C++> 继承

目录 前言 一、继承概念 1. 继承概念 2. 继承定义格式 3. 继承关系和访问限定符 4. 继承基类成员访问方式的变化 二、基类和派生类对象赋值转换 三、继承中的作用域 四、派生类的默认成员函数 五、继承与友元 六、继承与静态成员 七、菱形继承及菱形虚拟继承 1. 菱形继承 2. 虚…

高性能计算HPC所面临的问题

一、电力墙问题 能源动力领域关注高性能计算主要关注其能效和功耗等问题&#xff0c;也就是在高性能计算&#xff08;High-Performance Computing, HPC&#xff09;领域中&#xff0c;所谓的"电力墙"&#xff08;Power Wall&#xff09;&#xff0c;电力墙是一个描述…

Windows power shell for循环

有时候需要重复执行某个shell命令 for($i1;$i -lt 10;$i$i1){echo $i}如果是cmd for /l %i in (1,1,5) do echo %i

气膜厂家如何确保质量?

气膜厂家是专门生产和销售气膜产品的企业&#xff0c;需要对产品的质量进行有效管理和控制&#xff0c;以确保产品能够满足客户的需求和期望。下面将从生产过程、质量控制手段和售后服务等方面介绍气膜厂家如何确保产品质量。 起初&#xff0c;气膜厂家需要建立完善的质量管理…

python pdf转txt文本、pdf转json

文章目录 一、前言二、实现方法1. 目录结构2. 代码 一、前言 此方法只能转文本格式的pdf&#xff0c;如果是图片格式的pdf需要用到ocr包&#xff0c;以后如果有这方面需求再加这个方法 二、实现方法 1. 目录结构 2. 代码 pdf2txt.py 代码如下 #!/usr/bin/env python # -*- …

基于法医调查算法优化概率神经网络PNN的分类预测 - 附代码

基于法医调查算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于法医调查算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于法医调查优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神…