【腾讯云云上实验室】向量数据库与数据挖掘分析的黄金组合指南

前言:

在当今信息化时代,掌握对数据进行挖掘和分析的能力变得愈发关键。根据需求精准处理数据不仅仅是一项技能,更是对未来决策和操作的至关重要的支持。除了熟练运用适当的算法模型对大数据进行挖掘和分析外,合理高效存储和处理大量数据,对开发者和企业来说变得越来越重要。

在这里插入图片描述

文章目录

  • 一、走近腾讯云向量数据库
  • 二、助力数据收集和处理
  • 三、数据挖掘和分析使用指南
    • 1. 准备工作
    • 2. 数据操作演示(平台端)
    • 3. 数据操作演示(SDK接入)
    • 4. 以汽车相关数据进行分析预测
  • 四、大数据时代下的数据挖掘的未来趋势
  • 五、总结

前几天,和往常一样下班后回家打开电脑学一会,偶然机会看到了腾讯云刚发布的向量数据库体验活动,刚好最近手头的工作也忙完了,于是下意识也报名申请了一个体验名额。在体验使用的时候,也融入了一些对数据进行分析和挖掘的算法。
在这里插入图片描述

整体使用感觉也非常棒,经过这几天的整理和总结,能够帮助不了解或者没使用过的小伙伴快速熟悉并且有一定的上手。(腾讯云向量数据库:感兴趣的小伙伴可以去申请名额体验)

一、走近腾讯云向量数据库

看到向量数据库你可能会想到数据库,但是它和传统数据库相比有鲜明的优点。可能有不少朋友在平常工作或者生活中,或多或少都接触过一些关于向量数据库的消息,作为一个全能的程序员,除了关注底层的逻辑外,清晰明了向量数据库发展的方向和未来趋势,能否抓住这个在发展风口机会。我们还需要去了解,让我来以腾讯云向量数据库为例给你讲讲吧。

在这里插入图片描述
随着AI技术的快速发展,越来越多的公司和企业开始重视底层数据的合作探索。在将大型模型应用于实际场景中,数据处理和挖掘变得至关重要。向量数据库作为支撑大型模型的关键基础设施,将在个人、企业和社交媒体等领域发挥越来越重要的作用。

总的来说:向量数据库的优势在于高效的向量相似性搜索、高维数据处理、特定索引结构、异构数据类型支持,适用于机器学习和深度学习、大规模数据处理,提供实时性能。选择使用向量数据库应基于应用需求和性能评估。

二、助力数据收集和处理

每天,每个人都面临来自各个渠道的数千条信息。而对于开发者和企业用户而言,每天需要处理的信息量更是以万计甚至千亿计。信息的接收和处理成为一个极具挑战性的任务。。
在这里插入图片描述
往往让开发者和企业在处理数据方面头疼的问题不外乎:

1. 如何适应业务数据快速变化的需求?

2. 如何保障数据安全?

3. 如何实现业务系统对高实时响应的要求?

4. 如何在多样化的销售和服务场景中?

腾讯云向量数据库由于其卓越的稳定性、性能、易用性和便捷的运维,都展现出了显著优势,能够提供高效稳定的服务。

  1. 高性能: 向量数据库单索引支持10亿级向量数据规模,可支持百万级 QPS 及毫秒级查询延迟。
  2. 高可用: 向量数据库提供多副本高可用特性,其多可用区和三节点的架构可用性可达99.99%,显著提高系统的
  3. 可靠性和容错性:确保数据库在面临节点故障和负载变化等挑战时仍能正常运行。
  4. 大规模: 向量数据库架构支持水平扩展,单实例可支持百万级 QPS,轻松满足 AI 场景下的向量存储与检索需求。
  5. 低成本: 只需在管理控制台按照指引,简单操作几个步骤,即可快速创建向量数据库实例,全流程平台托管,无需进行任何安装、部署和运维操作,有效减少机器成本、运维成本和人力成本开销。
  6. 简单易用: 支持丰富的向量检索能力,用户通过 HTTP API 接口即可快速操作数据库,开发效率高。同时控制台提供了完善的数据管理和监控能力,操作简单便捷。
  7. 稳定可靠: 向量数据库源自腾讯集团自研的向量检索引擎 OLAMA,近40个业务线上稳定运行,日均处理的搜索请求高达千亿次,服务连续性、稳定性有保障。

三、数据挖掘和分析使用指南

在这里插入图片描述

1. 准备工作

  1. 首先我们需要去申请一台向量数据库 腾讯云向量数据库申请 ,登录进入后,点击新建。如图,是已经构建好的向量数据库
    在这里插入图片描述
  2. 配置向量数据库实例相关信息
  3. 创建好向量数据库后,可以查看相关的配置信息,包括内网外网访问地址,以及密钥信息在这里插入图片描述
  4. 创建好向量数据库后,点击登录,来到向量数据库登录界面,如图需要账号和密码账号默认是root,密码是向量数据库配置中的密钥在这里插入图片描述
  5. 登录进去后,可以看到先向量数据库管理模块和数据操作模块。管理模块可以创建向量数据库,管理集合。数据操作模块可以进行精确、相似度查询、插入/替换、更新、删除数据。

在这里插入图片描述

2. 数据操作演示(平台端)

腾讯云向量数据库支持多种方式操作向量数据库,包括:使用平台数据操作模块操作,或者接入Python,Java以及HttpAPI来进行操作,在这里我演示一下平台数据操作和接入Python的SDK使用。

1.插入/更新 参数数据 支持以json格式插入数据

在这里插入图片描述
2.精确查询 参数支持以 表单和JSON两种格式根据不同情况(包括:主键和条件进行查询)

在这里插入图片描述
3.相似度查询 可以根据不同格式进行检索,同时也支持条件查询和主键查询,这一步会检索出结果有相似程度的数据

在这里插入图片描述
4.删除数据 可以根据条件查询删除,同时也可以根据主键去删除

在这里插入图片描述

3. 数据操作演示(SDK接入)

1.官方提供了多种接入方式,在这里我以Python为例子,进行接入 腾讯云向量数据库API文档

在这里插入图片描述
2.以Python为例,本地连接远程向量数据库
首先需要导入依赖:

pip install tcvectordb

然后连接远程向量数据库,这一块url 输入你的向量数据库外网地址,apikey输入你的向量数据库密钥

import tcvectordb
from tcvectordb.model.enum import FieldType, IndexType, MetricType, ReadConsistency

#这一块url 输入你的向量数据库外网地址,apikey输入你的向量数据库密钥
client = tcvectordb.VectorDBClient(url='http://10.0.X.X', username='root', key='eC4bLRy2va******************************', read_consistency=ReadConsistency.EVENTUAL_CONSISTENCY, timeout=30)
# 连接到数据库
db = client.database('test')

# 获取或创建集合
coll = db.collection("test_1")

3.连接好后,就可以对向量数据库中数据进行相关操作,通过查看文档API,可以实现刚才第二步骤上的平台数据操作流程,下面举几个例子

文档4. 如下图所示,可以根据文档进行代码编写,实现数据库和数据库中集合的相关操作

在这里插入图片描述

4. 以汽车相关数据进行分析预测

目的:通过数据分析根据二手汽车行驶的公里来预测汽车的二手价格

1.原数据:总共几万条二手汽车信息数据,处理之后存入向量数据库中,模拟实际情况

在这里插入图片描述
这里是处理一些脏数据,然后存入向量数据库中

def hadnle(data):
    data = data[data.Km != '百公里内']
    data = data[data.Boarding_time != '未上牌']
    data = data[data.New_price != '暂无']
    data = data[['Km', 'Sec_price', 'Boarding_time', 'New_price']]
    data['New_price'] = data['New_price'].apply(lambda x: float(x.strip('万')))

    def km_to_float(x):
        return float(x.strip('万公里'))

    data['Km'] = data['Km'].apply(km_to_float)
    data['Boarding_time'] = (pd.to_datetime(data['Boarding_time'], format='%Y年%m月') - pd.to_datetime(
        '2000-01-01')).dt.days / 30
    data['Sec_price'] = data['Sec_price'].apply(lambda x: float(x))
    return data

2.通过将部分汽车数据存储在向量数据库的集合中

在这里插入图片描述

3.可以通过学习官方API提取出想要的数据:

在这里插入图片描述
举例:根据需求从对应向量数据库的集合中提取中想要的数据

import tcvectordb
from tcvectordb.model.enum import FieldType, IndexType, MetricType, ReadConsistency
from tcvectordb.model.index import Index, VectorIndex, FilterIndex, HNSWParams
from tcvectordb.model.document import Document, Filter, SearchParams

#create a database client object
client = tcvectordb.VectorDBClient(url='http://10.0.X.X', username='root', key='eC4bLRy2va******************************', read_consistency=ReadConsistency.EVENTUAL_CONSISTENCY, timeout=30)

db = client.database('db-test')
coll = db.collection('book-vector')

# Set filter
filter_param=Filter(Filter.In("bookName",["三国演义", "西游记"]))
# query 
doc_list = coll.query(document_ids=['0001','0002','0003'], retrieve_vector=True, filter=filter_param, limit=3, offset=0, output_fields=['bookName','author'])

for doc in doc_list:
          print(doc)

4.通过机器学习方法对需要的数据进行分析:(具体情况根据)
线性回归分析:

data = hadnle(data)

# 根据需要选择输入和输出特征
X = data[['Km','Boarding_time','New_price']]
Y = data['Sec_price']

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)

# 使用线性回归模型
model = linear_model.LinearRegression()

#训练模型
model.fit(X_train, y_train)

# 用测试集评估模型性能
y_pred = model.predict(X_test)
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)

分析结果:
在这里插入图片描述

5.决策树回归模型分析:

data = hadnle(data)
# 根据需要选择输入和输出特征
X = data[['Km','Boarding_time','New_price']]
Y = data['Sec_price']

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)

# 创建决策树回归模型
model = DecisionTreeRegressor(random_state=42)

#训练模型
model.fit(X_train, y_train)

# 用测试集评估模型性能
y_pred = model.predict(X_test)
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)

分析结果:
在这里插入图片描述

6.随机森林模型分析:

data = hadnle(data)
# 根据需要选择输入和输出特征
X = data[['Km','Boarding_time','New_price']]
Y = data['Sec_price']

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)

#随机森林
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

#训练模型
model.fit(X_train, y_train)

# 用测试集评估模型性能
y_pred = model.predict(X_test)
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)

分析结果:
在这里插入图片描述

四、大数据时代下的数据挖掘的未来趋势

通过在向量数据库中存储经过AI模型训练的向量嵌入,能够实现高效的相似度搜索和近邻查询,从而显著提升查询速度。向量数据库不仅支持多模态数据的存储和检索,还能够处理各种不同类型的数据,包括文本、图像和音频等。这对于多模态AI应用,如视觉与语义检索以及多模态生成等,具有重要意义。

随着实时性能的不断提升,向量数据库将更好地满足实时数据检索和分析的需求,对预测分析、信息处理等领域产生深远的影响。我们可以期待数据库未来支持更多数据类型,包括但不限于图像、文本和音频,以更好地适应多模态数据的存储和检索。总体而言,向量数据库将为数据处理领域带来创新,为各行业提供更高效、智能的数据管理服务。

五、总结

通过这个参与活动体验腾讯云向量数据库,整体感觉使用起来非常棒,感兴趣的小伙伴可以通过下方方式了解更多信息,体验和使用向量数据库进行开发。也祝腾讯云向量数据库越来越好。
大数据时代下的数据挖掘的未来趋势

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/185754.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[原创](免改BIOS)使用Clover升级旧电脑-(高阶玩法)让固态硬盘内置Win11 PE启动系统

[简介] 常用网名: 猪头三 出生日期: 1981.XX.XXQQ: 643439947 个人网站: 80x86汇编小站 https://www.x86asm.org 编程生涯: 2001年~至今[共22年] 职业生涯: 20年 开发语言: C/C、80x86ASM、PHP、Perl、Objective-C、Object Pascal、C#、Python 开发工具: Visual Studio、Delphi…

Qt项目打包发布超详细教程

https://blog.csdn.net/qq_45491628/article/details/129091320

定制手机套餐---python序列

if __name__ __main__:print("定制手机套餐")print("")#定义电话时长:字典callTimeOptions{1:0分钟,2:50分钟,3:100分钟,4:300分钟,5:不限量}keyinput("请输入电话时长的选择编号:")valuecallTimeOptions.get(key)if val…

必看!精品小程序UI设计模板,6款一网打尽!

身处于网络世界日新月异的变革中,智能手机已然成为我们日常生活、学习和工作的必不可少的伙伴。而小程序,这种无需额外下载和安装,随时随地都能用上的应用,因其便捷快速,功能丰富的特色,赢得了广大用户的喜…

SpringBoot3核心原理

SpringBoot3核心原理 事件和监听器 生命周期监听 场景:监听应用的生命周期 可以通过下面步骤自定义SpringApplicationRunListener来监听事件。 ①、编写SpringApplicationRunListener实现类 ②、在META-INF/spring.factories中配置org.springframework.boot.Sprin…

11-23 SSM4

Ajax 同步请求 :全局刷新的方式 -> synchronous请求 客户端发一个请求,服务器响应之后你客户端才能继续后续操作,请求二响应完之后才能发送后续的请求,依次类推 有点:服务器负载较小,但是由于服务器相应…

Python大语言模型实战-记录一次用ChatDev框架实现爬虫任务的完整过程

1、模型选择:GPT4 2、需求:在win10操作系统环境下,基于python3.10解释器,爬取豆瓣电影Top250的相关信息,包括电影详情链接,图片链接,影片中文名,影片外国名,评分&#x…

C百题--8.计算并给定整数的所有因子和

1.问题描述 计算并给定整数的所有因子和&#xff08;不包括1和自身&#xff09; 2.解决思路 给定一个整数n&#xff0c;从i2开始遍历&#xff0c;如果n%i0则说明是因子&#xff0c;进行求和即可 3.代码实现 #include<stdio.h> int main(){int n,sum;scanf("%d&…

redis运维(十二) 位图

一 位图 ① 概念 1、说明&#xff1a;位图还是在操作字符串2、位图玩字符串在内存中存储的二进制3、ASCII字符通过映射转化为二进制4、操作的是字符串value ② ASCII字符铺垫 1、控制ASCII字符 2、ASCII可显示字符 ③ SETBIT 细节&#xff1a; setbit 命令的返回值是之…

构造命题公式的真值表

构造命题公式的真值表 1&#xff1a;实验类型&#xff1a;验证性2&#xff1a;实验目的&#xff1a;3&#xff1a;逻辑联结词的定义方法4&#xff1a;命题公式的表示方法5&#xff1a;【实验内容】 1&#xff1a;实验类型&#xff1a;验证性 2&#xff1a;实验目的&#xff1a…

中伟视界:AI分析盒子——ai算法中通过什么方法做到一个对象只报警一次,为每个对象生成一个唯一ID

在AI算法中&#xff0c;通过特定的方法实现对象只报警一次&#xff0c;为每个对象生成唯一ID是非常重要的技术问题。随着人工智能技术的快速发展&#xff0c;AI算法在各个领域得到了广泛应用&#xff0c;如安防监控、智能交通、自动驾驶等。而在这些应用场景中&#xff0c;需要…

2023年【制冷与空调设备安装修理】考试报名及制冷与空调设备安装修理考试资料

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 制冷与空调设备安装修理考试报名考前必练&#xff01;安全生产模拟考试一点通每个月更新制冷与空调设备安装修理考试资料题目及答案&#xff01;多做几遍&#xff0c;其实通过制冷与空调设备安装修理模拟试题很简单。…

VBA即用型代码手册之工作薄的关闭保存及创建

我给VBA下的定义&#xff1a;VBA是个人小型自动化处理的有效工具。可以大大提高自己的劳动效率&#xff0c;而且可以提高数据的准确性。我这里专注VBA,将我多年的经验汇集在VBA系列九套教程中。 作为我的学员要利用我的积木编程思想&#xff0c;积木编程最重要的是积木如何搭建…

番外篇之矩阵运算

矩阵的运算代码&#xff08;加减乘除&#xff09;&#xff08;内有注释&#xff09; #define _CRT_SECURE_NO_WARNINGS 1 #include<stdio.h> #define ROW 10 //定义行 #define COL 10 //定义列 //设置全局变量A矩阵的m代表实际矩阵的行数&#xff0c;n代表实际矩阵的列…

流程图是什么,用什么软件做?

在工作流程中&#xff0c;经常会遇到需要图形化呈现整个流程的情况。流程图就是一种一目了然的图形化表现方式&#xff0c;便于人们理解、沟通和管理整个流程。 1.Visio Visio是一款微软公司的图表软件&#xff0c;可以用于创建各种类型的流程图、组织结构图、网络图、平面图…

js粒子效果(二)

效果: 代码: <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Particle Animation</title><…

【数据结构】二叉排序树(c风格、结合c++引用)

目录 1 基本概念 结构体定义 各种接口 2 二叉排序树的构建和中序遍历 递归版单次插入 非递归版单次插入 3 二叉排序树的查找 非递归版本 递归版本 4 二叉排序树的删除&#xff08;难点&#xff09; 1 基本概念 普通二叉排序树是一种简单的数据结构&#xff0c;节点的值…

青云科技容器平台与星辰天合存储产品完成兼容性互认证

近日&#xff0c; 北京青云科技股份有限公司&#xff08;以下简称&#xff1a;青云科技&#xff09;的 KubeSphere 企业版容器平台成功完成了与 XSKY星辰天合的企业级分布式统一数据平台 V6&#xff08;简称&#xff1a;XEDP&#xff09;以及天合翔宇分布式存储系统 V6&#xf…

0001Java程序设计-springboot基于微信小程序批发零售业商品管理系统

文章目录 **摘 要****目录**系统实现开发环境 编程技术交流、源码分享、模板分享、网课分享 企鹅&#x1f427;裙&#xff1a;776871563 摘 要 本毕业设计的内容是设计并且实现一个基于微信小程序批发零售业商品管理系统。它是在Windows下&#xff0c;以MYSQL为数据库开发平台…

深度学习卷积神经网络参数计算难点重点

目录 一、卷积层图像输出尺寸 二、池化层图像输出尺寸 三、全连接层输出尺寸 四、卷积层参数数量 五、全连接层参数数量 六、代码实现与验证 以LeNet5经典模型为例子并且通道数为1 LeNet5网络有7层&#xff1a; ​ 1.第1层&#xff1a;卷积层 ​ 输入&#xff1a;原始的图片像素…