算法笔记:OPTICS 聚类

1 基本介绍

  • OPTICS(Ordering points to identify the clustering structure)是一基于密度的聚类算法
    • OPTICS算法是DBSCAN的改进版本
      • 在DBCSAN算法中需要输入两个参数: ϵ 和 MinPts ,选择不同的参数会导致最终聚类的结果千差万别,因此DBCSAN对于输入参数过于敏感
      •  机器学习笔记:DBSCAN_dbscan参数选取-CSDN博客
    • OPTICS算法的提出就是为了帮助DBSCAN算法选择合适的参数,降低输入参数的敏感度
      • OPTICS主要针对输入参数ϵ过敏感做的改进
      • OPTICS和DBSCNA的输入参数一样( ϵ 和 MinPts  ),虽然OPTICS算法中也需要两个输入参数,但该算法对 ϵ 输入不敏感(一般将 ϵ 固定为无穷大)【不太清楚为什么不直接不输入ε呢?】
      • 同时该算法中并不显式的生成数据聚类,只是对数据集合中的对象进行排序,得到一个有序的对象列表
        • 通过该有序列表,可以得到一个决策图
        • 通过决策图可以不同 ϵ 参数的数据集中检测簇集,
      • 即:先通过固定的 MinPts  和无穷大的 ϵ 得到有序列表,然后得到决策图,通过决策图可以知道当 ϵ 取特定值时(比如 ϵ=3 )数据的聚类情况。

1.1 和DBSCAN相似的概念

  • ε、minPts、核心点、边缘点、噪点、密度直达(直接密度可达)、密度可达、密度相连 这些概念可见“机器学习笔记:DBSCAN_dbscan参数选取-CSDN博客

 1.2 OPTICS新的定义

1.2.1 核心距离

换句话说,如果x不是核心点,那么cd(x)就没有意义

1.2.2 可达距离

  • 也是,如果x不是核心点,那么rd(y,x)没有意义
  • 如果y在x的ε领域内,那么rd(y,x)=cd(x);如果在x的ε领域外,那么就是d(y,x)

1.3 算法思想

假设数据集为X=\{x_1,x_2,\cdots,x_m\},OPTICS算法的目标是输出一个有序排列,以及每个元素的两个属性值:核心距离,可达距离。

1.3.1 OPTICS算法的数据结构

1.4 算法流程

  • 输入:数据集X=\{x_1,x_2,\cdots,x_m\},领域参数ε(一般等于∞),MinPts
  1. 创建两个队列,有序队列O和结果队列R
    • 有序队列用来存储核心对象及其该核心对象的密度直达对象,并按可达距离升序排列
      • 理解为待处理的数据
    • 结果队列用来存储样本点的输出次序
      • 已经处理完的数据
  2. 如果D中所有点都处理完毕或者不存在核心点,则算法结束。否则:
    1. 选择一个未处理(即不在结果队列R中)且为核心对象的样本点 p
    2. 将 p 放入结果队列R中,并从X中删除 p
    3. 找到 X 中 p 的所有密度直达样本点 x,计算 x 到 p 的可达距离
      1. 如果 x 不在有序队列O 中,则将 x 以及可达距离放入 O 中
      2. 若 x 在O中,则如果 x 新的可达距离更小,则更新 x 的可达距离
    4. 最后对O中数据按可达距离从小到大重新排序。
  3. 如果有序队列O为空,则回到步骤2,否则:
    1. 取出O 中第一个样本点 y(即可达距离最小的样本点),放入 R 中
    2. 从 D 和 O 中删除 y
    3. 如果 y 不是核心对象,则重复步骤 3(即找 O 中剩余数据可达距离最小的样本点)
    4. 如果 y 是核心对象,则
      1. 找到 y 在 D 中的所有密度直达样本点
      2. 计算到 y 的可达距离
      3. 所有 y 的密度直达样本点更新到 O 中
      4. 对O中数据按可达距离从小到大重新排序。
  4. 重复步骤2、3,直到算法结束。
  5. 最终可以得到一个有序的输出结果,以及相应的可达距离。

1.5 举例

样本数据集为:D = {[1, 2], [2, 5],  [8, 7], [3, 6],  [8, 8], [7, 3], [4,5]}

假设eps = inf,min_samples=2,则数据集D在OPTICS算法上的执行步骤如下:

  • 计算所有的核心对象和核心距离
    • 因为 eps 为无穷大,则显然每个样本点都是核心对象
    • 因为 min_samples=2,则每个核心对象的核心距离就是离自己最近样本点到自己的距离(样本点自身也是邻域元素之一)
    • 索引0123456
      元素(1, 2)(2, 5)(8, 7)(3, 6)(8, 8)(7, 3)(4, 5)
      核心距离3.161.411.01.411.03.611.41
  • 随机在 D 中选择一个核心对象
    • 假设选择 0 号元素,将 0 号元素放入 R 中,并从 D 中删除
    • 因为 eps = inf,则其他所有样本点都是 0 号元素的密度直达对象
    • 计算其他所有元素到 0 号元素的可达距离(计算所有元素到 0 号元素的欧氏距离)
    • 按可达距离排序,添加到序列 O 中
    • 此时D{1,2,3,4,5,6},R{0},O{1,6,3,5,2,4}
    • 索引0123456核心对象
      元素(1, 2)(2, 5)(8, 7)(3, 6)(8, 8)(7, 3)(4, 5)
      核心距离3.161.411.01.411.03.611.41
      第一次可达距离--3.168.604.479.216.084.240
  • 此时 O 中可达距离最小的元素是 1 号元素
    • 取出 1 号元素放入 R ,并从 D 和 O 中删除
    • 因为 1 号元素是核心对象,找到 1 号元素在 D 中的所有密度直达对象(剩余的所有样本点),并计算可达距离
    • 同时更新 O
    • 此时 D{2,3,4,5,6} R{0,1} O{3,6,5,2,4}
    • 索引0123456核心对象
      元素(1, 2)(2, 5)(8, 7)(3, 6)(8, 8)(7, 3)(4, 5)
      核心距离3.161.411.01.411.03.611.41
      第二次可达距离----6.321.416.705.382.01
  • 此时 O 中可达距离最小的元素是 3 号元素
    • 取出 3 号元素放入 R ,并从 D 和 O 中删除
    • 因为 3 号元素是核心对象,找到 3 号元素在 D 中的所有密度直达对象(剩余的所有样本点),并计算可达距离
    • 同时更新 O
    • 此时D{2,4,5,6} R{0,1,3} O{6,5,2,4}
    • 索引0123456核心对象
      元素(1, 2)(2, 5)(8, 7)(3, 6)(8, 8)(7, 3)(4, 5)
      核心距离3.161.411.01.411.03.611.41
      第三次可达距离----5.09--5.395.01.413
  • 此时 O 中可达距离最小的元素是 6 号元素
    • 取出 6 号元素放入 R ,并从 D 和 O 中删除
    • 因为 6 号元素是核心对象,找到 6 号元素在 D 中的所有密度直达对象(剩余的所有样本点),并计算可达距离,同时更新 O
    • 此时D{2,4,5},R{0,1,3,6},O(5,2,4}
    • 索引0123456核心对象
      元素(1, 2)(2, 5)(8, 7)(3, 6)(8, 8)(7, 3)(4, 5)
      核心距离3.161.411.01.411.03.611.41
      第四次可达距离----4.47--5.03.61--6
  • 此时 O 中可达距离最小的元素是 5 号元素
    • 取出 5 号元素放入 R ,并从 D 和 O 中删除
    • 因为 5 号元素是核心对象,找到 5 号元素在 D 中的所有密度直达对象(剩余的所有样本点),并计算可达距离,同时更新 O。
    • 注意本次计算的4号元素到5号元素的可达距离是5.10,大于5.0,因此不更新4号元素的可达距离
    • 此时D{2,4}R{0,1,3,6,5} O(2,4)
    • 索引0123456核心对象
      元素(1, 2)(2, 5)(8, 7)(3, 6)(8, 8)(7, 3)(4, 5)
      核心距离3.161.411.01.411.03.611.41
      第五次可达距离----4.12--

      5.0

      (5.10)

      ----5
  • 此时 O 中可达距离最小的元素是 2 号元素
    • 取出 2 号元素放入 R ,并从 D 和 O 中删除
    • 因为 2 号元素是核心对象,找到 2 号元素在 D 中的所有密度直达对象,并计算可达距离,同时更新 O
    • 索引0123456核心对象
      元素(1, 2)(2, 5)(8, 7)(3, 6)(8, 8)(7, 3)(4, 5)
      核心距离3.161.411.01.411.03.611.41
      第六次可达距离--------1.0----2

所以最后的R:(0,1,3,6,5,2,4) ,对应的可达距离为:{∞,3.16,1.41,1.41,3.61,4.12,1.0}

按照最终的输出顺序绘制可达距离图

  • 可以发现,可达距离呈现两个波谷,也即表现为两个簇,波谷越深,表示簇越紧密
  • 只需要在两个波谷之间取一个合适的 eps 分隔值(图中蓝色的直线),使用 DBSCAN 算法就会聚类为两个簇。
  • 即第一个簇的元素为:0、1、3、6、5;第二个簇的元素为:2、4。

1.4 和DBSCAN的异同

  • OPTICS算法与DBSCAN算法有许多相似之处,可以被视为DBSCAN的一种泛化,它将eps要求从单一值放宽到值范围
  • DBSCAN和OPTICS之间的关键区别在于,OPTICS算法构建了一个可达性图,为每个样本分配了一个可达性距离和在集群排序属性中的位置
    • 这两个属性在模型拟合时被赋值,并用于确定集群成员资格

1.5 可达性距离

  • OPTICS生成的可达性距离允许在单个数据集中提取可变密度的集群
    • 结合可达性距离和数据集排序产生了一个可达性图,其中点密度在Y轴上表示,点的排序使得附近的点相邻
    • 平行于x轴“切割”可达性图产生了类似DBSCAN的结果:
      • 所有在“切割”线以上的点被分类为噪声
      • 每当从左到右阅读时出现间断时,就标志着一个新的集群
  • OPTICS的默认集群提取方法是查看图中的陡峭斜坡以找到集群,可以使用xi参数定义什么算作陡峭斜坡

1.6 计算复杂度

  • 空间索引树用于避免计算完整的距离矩阵,并允许在大量样本集上有效地使用内存
  • 对于大型数据集,可以通过HDBSCAN获得类似(但不完全相同)的结果。
    • HDBSCAN实现是多线程的,并且比OPTICS具有更好的算法运行时间复杂性,但以较差的内存扩展为代价

2 sklearn.cluster.OPTICS

class sklearn.cluster.OPTICS(
    *, 
    min_samples=5, 
    max_eps=inf, 
    metric='minkowski', 
    p=2, 
    metric_params=None, 
    cluster_method='xi', 
    eps=None, 
    xi=0.05, 
    predecessor_correction=True, 
    min_cluster_size=None, 
    algorithm='auto', 
    leaf_size=30, 
    memory=None, 
    n_jobs=None)

2.1 主要参数

min_samples

int > 1 或介于0和1之间的浮点数,默认为5

点被视为核心点时,邻域中的样本数量

如果是浮点数,表示样本数量的一部分

max_eps

两个样本被视为彼此邻域的最大距离。

np.inf的默认值将识别所有规模的聚类;

降低max_eps将导致更短的运行时间

metric

str或可调用,默认为'minkowski'

用于距离计算的度量。可以使用

来自scikit-learn:['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan']

来自scipy.spatial.distance:['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule']

p闵可夫斯基度量的参数
xi

float在0和1之间,默认为0.05

确定可达性图中构成聚类边界的最小陡度。

例如,可达性图中的向上点被定义为一个点与其后继的比率最多为1-xi。

仅在cluster_method='xi'时使用

min_cluster_size

int > 1 或介于0和1之间的浮点数,默认为None

OPTICS聚类中的最小样本数量,表示为绝对数量或样本数量的一部分(至少为2)。如果为None,则使用min_samples的值。

仅在cluster_method='xi'时使用。

algorithm

{'auto', 'ball_tree', 'kd_tree', 'brute'},默认为'auto' 用于计算最近邻居的算法:

'ball_tree'将使用BallTree。

'kd_tree'将使用KDTree。

'brute'将使用蛮力搜索。

'auto'(默认)将尝试根据传递给fit方法的值决定最合适的算法。

leaf_size传递给BallTree或KDTree的叶子大小。这会影响构建和查询的速度,以及存储树所需的内存。最佳值取决于问题的性质。
cluster_method

str,默认为'xi'

使用计算的可达性和排序提取聚类的方法。可能的值是“xi”和“dbscan”

2.2. 举例

from sklearn.cluster import OPTICS
import numpy as np

X = np.array([[1, 2], [1, 4], [1, 0],
              [10, 2], [10, 4], [10, 0]])

op=OPTICS(min_samples=2).fit(X)

op.labels_
#array([0, 0, 0, 1, 1, 1])

op.ordering_
#array([0, 1, 2, 3, 4, 5])
#按聚类顺序排列的样本索引列表

op.reachability_
#array([inf,  2.,  2.,  9.,  2.,  2.])
#按对象顺序索引的每个样本的可达距离

op.core_distances_
#array([inf,  2.,  2.,  9.,  2.,  2.])
#每个样本成为核心点的核心距离
#永远不会成为核心的点的距离为无穷大。

参考内容:机器学习笔记(十一)聚类算法OPTICS原理和实践_optics聚类_大白兔黑又黑的博客-CSDN博客

(4)聚类算法之OPTICS算法 - 知乎 (zhihu.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/185019.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ONNX实践系列-修改yolov5-seg的proto分支输出shape

一、目标 本文主要介绍要将原始yolov5分割的输出掩膜从[b,c,h,.w]修改为[b, h, w, c] 原来的: 目标的: 代码如下: Descripttion: version: @Company: WT-XM Author: yang jinyi Date: 2023-09-08 11:26:28 LastEditors: yang jinyi LastEditTime: 2023-09-08 11:48:01 …

手动实现 git 的 git diff 功能

这是 git diff 后的效果,感觉挺简单的,不就是 比较新旧版本,新增了就用 "" 显示新加一行,删除了就用 "-" 显示删除一行,修改了一行就用 "-"、"" 显示将旧版本中的该行干掉了并…

线上PDF文件展示

场景: 请求到的PDF(url链接),将其展示在页面上 插件: pdfobject (我使用的版本: "pdfobject": "^2.2.12" ) 下载插件就不多说了,下面将其引入&a…

线上ES集群参数配置引起的业务异常案例分析

本文介绍了一次排查Elasticsearch node_concurrent_recoveries 引发的性能问题的过程。 一、故障描述 1.1 故障现象 1. 业务反馈 业务部分读请求抛出请求超时的错误。 2. 故障定位信息获取 故障开始时间 19:30左右开始 故障抛出异常日志 错误日志抛出timeout错误。 故障之前…

大数据 DataX-Web 详细安装教程

目录 一、DataX-Web 介绍 1.1 DataX-Web 是什么 1.2 DataX-Web 架构 二、DataX-Web 安装部署 2.1 环境要求 2.2 安装 2.3 部署 2.4 数据库初始化 2.5 配置 2.6 启动服务 2.6.1 一键启动所有服务 2.6.2 一键取消所有服务 2.7 查看服务(注意&#xff01…

2024深圳电子展,加快粤港澳电子信息发展,重点打造“湾区经济”

在“十四五”期间,中国电子信息产业面临着新形势和新特点。随着国家对5G、人工智能、工业互联网、物联网等“新基建”的加速推进,以及形成“双循环”新格局的形势,新型显示、集成电路等产业正在加速向国内转移。这一过程不仅带来了新的应用前…

HTTP协议抓包工具Charles 抓包图文完整教程

Charles是在您自己的计算机上运行的Web代理(HTTP代理 / HTTP监视器),您的网络浏览器(或任何其他Internet应用程序)配置为通过Charles访问Internet,Charles可以为您记录并显示发送和接收的所有数据。 Http抓…

盘点43个Python登录第三方源码Python爱好者不容错过

盘点43个Python登录第三方源码Python爱好者不容错过 学习知识费力气,收集整理更不易。 知识付费甚欢喜,为咱码农谋福利。 项目名称 bnuz中国电信校园网模拟登录,python selenium BNUZ教务系统认证爬虫Python语言实现,你可以用…

UNETR++:深入研究高效和准确的3D医学图像分割

论文:https://arxiv.org/abs/2212.04497 代码:GitHub - Amshaker/unetr_plus_plus: UNETR: Delving into Efficient and Accurate 3D Medical Image Segmentation 机构:Mohamed Bin Zayed University of Artificial Intelligence1, Univers…

工业级5G路由器:稳定性更高,网络速度更快!

随着5G技术的发展,5G路由器也越来越受到人们的关注。特别是工业级5G路由器,它的应用范围更广,稳定性更高,网络速度更快,已成为许多企业和工业领域的必备选择。 一、工业级5G路由器的特点 工业级5G路由器具有很多独特的…

社区物联网云服务架构设计

文章目录 1 摘要2 架构图2.1 社区物联网云服务网络拓扑图2.2 社区物联网云服务通讯流程图2.3 社区远程开锁功能流程图 3 应用场景 1 摘要 随着社区管理越来越智能化,社区物联网升级与改造的市场空间也越来越大。社区物联网包含楼宇对讲、门禁门锁、通道闸等等设备系…

Vue3(setup)中使用vue-cropper图片上传裁剪插件,复制代码直接使用

最近在项目中用到上传裁剪,看了一下代码,觉得这插件可可以。梳理了一下代码分享给大家 前端UI组件element-plus 如果你也用到了 ,快速帮你解决了问题,别忘记点赞收藏 1.首先看效果图 因为版本vue-cropper 众多 ,虽然网上有各…

S71200通过PROFINET协议和岛电数字控制器通讯

项目要求 西门子S71200PLC需要通过PROFINET协议和岛电数字控制器(型号:SRS13A)通讯,读取温度的测量值PV和设定值SV。 项目实施 采用NET90-PN-MBT(以下简称“网关”),它是一款将Modbus TCP/RT…

用户隐私与游戏体验如何平衡?第二周 Web3 开发者集结精华回顾

由 TinTinLand 联合 Dataverse 、Web3Go 、Subquery 、Cregis 、Litentry、Aspecta、SpaceID、ANOME、VARA&Gear、Moonbeam、Mantle、Obelisk 等 10 余家 Web3 项目共同举办的 Web3 开发者赢积分活动已举办至第三周。精彩线上主题活动分享、近距离交流体验互动,…

京东采销面对面,洞悉行业新趋势 京东3C数码生态大会在武汉圆满举行

为促进湖北省3C数码产业发展,本地企业降本增效、促进行业交流、充分发挥京东集团全链路生态服务能力,支持地方3C特色产业提质增量。2023年11月23日,由京东零售、京东物流主办,湖北省电子商务行业协会联合协办的“聚力共赢、携手共…

想问问各位大佬,网络安全这个专业普通人学习会有前景吗?

网络安全是一个非常广泛的领域,涉及到许多不同的岗位。这些岗位包括安全服务、安全运维、渗透测试、web安全、安全开发和安全售前等。每个岗位都有自己的要求和特点,您可以根据自己的兴趣和能力来选择最适合您的岗位。 渗透测试/Web安全工程师主要负责模…

山西电力市场日前价格预测【2023-11-25】

1.日前价格预测 预测说明: 如上图所示,预测明日(2023-11-25)山西电力市场全天平均日前电价为312.19元/MWh。其中,最高日前电价为350.80元/MWh,预计出现在09:15。最低日前电价为273.49元/MWh,预…

NX二次开发UF_CSYS_map_point 函数介绍

文章作者:里海 来源网站:https://blog.csdn.net/WangPaiFeiXingYuan UF_CSYS_map_point Defined in: uf_csys.h int UF_CSYS_map_point(int input_csys, double input_point [ 3 ] , int output_csys, double output_point [ 3 ] ) overview 概述 Ma…

2.19 keil里面工具EventCorder使用方法

设置方法如下: 添加初始化代码如下: eventRecord.c #include "eventRecord.h" #include "usart.h" extern UART_HandleTypeDef *pcControlUart;/* RecordEvent初始化 */ void InitEventRecorder(void) {#ifdef RTE_Compiler_Even…