深度学习图像风格迁移 - opencv python 计算机竞赛

文章目录

  • 0 前言
  • 1 VGG网络
  • 2 风格迁移
  • 3 内容损失
  • 4 风格损失
  • 5 主代码实现
  • 6 迁移模型实现
  • 7 效果展示
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习图像风格迁移 - opencv python

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

图片风格迁移指的是将一个图片的风格转换到另一个图片中,如图所示:

在这里插入图片描述
原图片经过一系列的特征变换,具有了新的纹理特征,这就叫做风格迁移。

1 VGG网络

在实现风格迁移之前,需要先简单了解一下VGG网络(由于VGG网络不断使用卷积提取特征的网络结构和准确的图像识别效率,在这里我们使用VGG网络来进行图像的风格迁移)。

在这里插入图片描述
如上图所示,从A-
E的每一列都表示了VGG网络的结构原理,其分别为:VGG-11,VGG-13,VGG-16,VGG-19,如下图,一副图片经过VGG-19网络结构可以最后得到一个分类结构。

在这里插入图片描述

2 风格迁移

对一副图像进行风格迁移,需要清楚的有两点。

  • 生成的图像需要具有原图片的内容特征
  • 生成的图像需要具有风格图片的纹理特征

根据这两点,可以确定,要想实现风格迁移,需要有两个loss值:
一个是生成图片的内容特征与原图的内容特征的loss,另一个是生成图片的纹理特征与风格图片的纹理特征的loss。

而对一张图片进行不同的特征(内容特征和纹理特征)提取,只需要使用不同的卷积结构进行训练即可以得到。这时我们需要用到两个神经网络。

再回到VGG网络上,VGG网络不断使用卷积层来提取特征,利用特征将物品进行分类,所以该网络中提取内容和纹理特征的参数都可以进行迁移使用。故需要将生成的图片经过VGG网络的特征提取,再分别针对内容和纹理进行特征的loss计算。

在这里插入图片描述
如图,假设初始化图像x(Input image)是一张随机图片,我们经过fw(image Transform Net)网络进行生成,生成图片y。
此时y需要和风格图片ys进行特征的计算得到一个loss_style,与内容图片yc进行特征的计算得到一个loss_content,假设loss=loss_style+loss_content,便可以对fw的网络参数进行训练。

现在就可以看网上很常见的一张图片了:

在这里插入图片描述
相较于我画的第一张图,这即对VGG内的loss求值过程进行了细化。

细化的结果可以分为两个方面:

  • (1)内容损失
  • (2)风格损失

3 内容损失

由于上图中使用的模型是VGG-16,那么即相当于在VGG-16的relu3-3处,对两张图片求得的特征进行计算求损失,计算的函数如下:

在这里插入图片描述

简言之,假设yc求得的特征矩阵是φ(y),生成图片求得的特征矩阵为φ(y^),且c=φ.channel,w=φ.weight,h=φ.height,则有:

在这里插入图片描述

代码实现:

def content_loss(content_img, rand_img):
    content_layers = [('relu3_3', 1.0)]
    content_loss = 0.0
    # 逐个取出衡量内容损失的vgg层名称及对应权重
    for layer_name, weight in content_layers:

        # 计算特征矩阵
        p = get_vgg(content_img, layer_name)
        x = get_vgg(rand_img, layer_name)
        # 长x宽xchannel
        M = p.shape[1] * p.shape[2] * p.shape[3]

        # 根据公式计算损失,并进行累加
        content_loss += (1.0 / M) * tf.reduce_sum(tf.pow(p - x, 2)) * weight

    # 将损失对层数取平均
    content_loss /= len(content_layers)
    return content_loss

4 风格损失

风格损失由多个特征一同计算,首先需要计算Gram Matrix

在这里插入图片描述
Gram Matrix实际上可看做是feature之间的偏心协方差矩阵(即没有减去均值的协方差矩阵),在feature
map中,每一个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字就代表一个特征的强度,而Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等,同时,Gram的对角线元素,还体现了每个特征在图像中出现的量,因此,Gram有助于把握整个图像的大体风格。有了表示风格的Gram
Matrix,要度量两个图像风格的差异,只需比较他们Gram Matrix的差异即可。 故在计算损失的时候函数如下:

在这里插入图片描述
在实际使用时,该loss的层级一般选择由低到高的多个层,比如VGG16中的第2、4、7、10个卷积层,然后将每一层的style loss相加。

在这里插入图片描述
第三个部分不是必须的,被称为Total Variation
Loss。实际上是一个平滑项(一个正则化项),目的是使生成的图像在局部上尽可能平滑,而它的定义和马尔科夫随机场(MRF)中使用的平滑项非常相似。
其中yn+1是yn的相邻像素。

代码实现以上函数:

# 求gamm矩阵
def gram(x, size, deep):
    x = tf.reshape(x, (size, deep))
    g = tf.matmul(tf.transpose(x), x)
    return g

def style_loss(style_img, rand_img):
    style_layers = [('relu1_2', 0.25), ('relu2_2', 0.25), ('relu3_3', 0.25), ('reluv4_3', 0.25)]
    style_loss = 0.0
    # 逐个取出衡量风格损失的vgg层名称及对应权重
    for layer_name, weight in style_layers:

        # 计算特征矩阵
        a = get_vgg(style_img, layer_name)
        x = get_vgg(rand_img, layer_name)

        # 长x宽
        M = a.shape[1] * a.shape[2]
        N = a.shape[3]

        # 计算gram矩阵
        A = gram(a, M, N)
        G = gram(x, M, N)

        # 根据公式计算损失,并进行累加
        style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight
    # 将损失对层数取平均
    style_loss /= len(style_layers)
    return style_loss

5 主代码实现

代码实现主要分为4步:

  • 1、随机生成图片

  • 2、读取内容和风格图片

  • 3、计算总的loss

  • 4、训练修改生成图片的参数,使得loss最小

      * def main():
            # 生成图片
            rand_img = tf.Variable(random_img(WIGHT, HEIGHT), dtype=tf.float32)
            with tf.Session() as sess:
    
                content_img = cv2.imread('content.jpg')
                style_img = cv2.imread('style.jpg')
            
                # 计算loss值
                cost = ALPHA * content_loss(content_img, rand_img) + BETA * style_loss(style_img, rand_img)
                optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)
            
                sess.run(tf.global_variables_initializer())
                
                for step in range(TRAIN_STEPS):
                    # 训练
                    sess.run([optimizer,  rand_img])
            
                    if step % 50 == 0:
                        img = sess.run(rand_img)
                        img = np.clip(img, 0, 255).astype(np.uint8)
                        name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"
                        cv2.imwrite(name, img)
    
    
    

    6 迁移模型实现

由于在进行loss值求解时,需要在多个网络层求得特征值,并根据特征值进行带权求和,所以需要根据已有的VGG网络,取其参数,重新建立VGG网络。
注意:在这里使用到的是VGG-19网络:

在重建的之前,首先应该下载Google已经训练好的VGG-19网络,以便提取出已经训练好的参数,在重建的VGG-19网络中重新利用。

在这里插入图片描述
下载得到.mat文件以后,便可以进行网络重建了。已知VGG-19网络的网络结构如上述图1中的E网络,则可以根据E网络的结构对网络重建,VGG-19网络:

在这里插入图片描述
进行重建即根据VGG-19模型的结构重新创建一个结构相同的神经网络,提取出已经训练好的参数作为新的网络的参数,设置为不可改变的常量即可。

def vgg19():
    layers=(
        'conv1_1','relu1_1','conv1_2','relu1_2','pool1',
        'conv2_1','relu2_1','conv2_2','relu2_2','pool2',
        'conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3',
        'conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4',
        'conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5'
    )
    vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')
    weights = vgg['layers'][0]

    network={}
    net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)
    network['input'] = net
    for i,name in enumerate(layers):
        layer_type=name[:4]
        if layer_type=='conv':
            kernels = weights[i][0][0][0][0][0]
            bias = weights[i][0][0][0][0][1]
            conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)
            net=tf.nn.relu(conv + bias)
        elif layer_type=='pool':
            net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')
        network[name]=net
    return network

由于计算风格特征和内容特征时数据都不会改变,所以为了节省训练时间,在训练之前先计算出特征结果(该函数封装在以下代码get_neck()函数中)。

总的代码如下:



    import tensorflow as tf
    import numpy as np
    import scipy.io
    import cv2
    import scipy.misc
    
    HEIGHT = 300
    WIGHT = 450
    LEARNING_RATE = 1.0
    NOISE = 0.5
    ALPHA = 1
    BETA = 500
    
    TRAIN_STEPS = 200
    
    OUTPUT_IMAGE = "D://python//img"
    STYLE_LAUERS = [('conv1_1', 0.2), ('conv2_1', 0.2), ('conv3_1', 0.2), ('conv4_1', 0.2), ('conv5_1', 0.2)]
    CONTENT_LAYERS = [('conv4_2', 0.5), ('conv5_2',0.5)]


    def vgg19():
        layers=(
            'conv1_1','relu1_1','conv1_2','relu1_2','pool1',
            'conv2_1','relu2_1','conv2_2','relu2_2','pool2',
            'conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3',
            'conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4',
            'conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5'
        )
        vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')
        weights = vgg['layers'][0]
    
        network={}
        net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)
        network['input'] = net
        for i,name in enumerate(layers):
            layer_type=name[:4]
            if layer_type=='conv':
                kernels = weights[i][0][0][0][0][0]
                bias = weights[i][0][0][0][0][1]
                conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)
                net=tf.nn.relu(conv + bias)
            elif layer_type=='pool':
                net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')
            network[name]=net
        return network


    # 求gamm矩阵
    def gram(x, size, deep):
        x = tf.reshape(x, (size, deep))
        g = tf.matmul(tf.transpose(x), x)
        return g


    def style_loss(sess, style_neck, model):
        style_loss = 0.0
        for layer_name, weight in STYLE_LAUERS:
            # 计算特征矩阵
            a = style_neck[layer_name]
            x = model[layer_name]
            # 长x宽
            M = a.shape[1] * a.shape[2]
            N = a.shape[3]
    
            # 计算gram矩阵
            A = gram(a, M, N)
            G = gram(x, M, N)
    
            # 根据公式计算损失,并进行累加
            style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight
            # 将损失对层数取平均
        style_loss /= len(STYLE_LAUERS)
        return style_loss


    def content_loss(sess, content_neck, model):
        content_loss = 0.0
        # 逐个取出衡量内容损失的vgg层名称及对应权重
    
        for layer_name, weight in CONTENT_LAYERS:
            # 计算特征矩阵
            p = content_neck[layer_name]
            x = model[layer_name]
            # 长x宽xchannel
    
            M = p.shape[1] * p.shape[2]
            N = p.shape[3]
    
            lss = 1.0 / (M * N)
            content_loss += lss * tf.reduce_sum(tf.pow(p - x, 2)) * weight
            # 根据公式计算损失,并进行累加
    
        # 将损失对层数取平均
        content_loss /= len(CONTENT_LAYERS)
        return content_loss


    def random_img(height, weight, content_img):
        noise_image = np.random.uniform(-20, 20, [1, height, weight, 3])
        random_img = noise_image * NOISE + content_img * (1 - NOISE)
        return random_img

   

    def get_neck(sess, model, content_img, style_img):
        sess.run(tf.assign(model['input'], content_img))
        content_neck = {}
        for layer_name, weight in CONTENT_LAYERS:
            # 计算特征矩阵
            p = sess.run(model[layer_name])
            content_neck[layer_name] = p
        sess.run(tf.assign(model['input'], style_img))
        style_content = {}
        for layer_name, weight in STYLE_LAUERS:
            # 计算特征矩阵
            a = sess.run(model[layer_name])
            style_content[layer_name] = a
        return content_neck, style_content


    def main():
        model = vgg19()
        content_img = cv2.imread('D://a//content1.jpg')
        content_img = cv2.resize(content_img, (450, 300))
        content_img = np.reshape(content_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]
        style_img = cv2.imread('D://a//style1.jpg')
        style_img = cv2.resize(style_img, (450, 300))
        style_img = np.reshape(style_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]
    
        # 生成图片
        rand_img = random_img(HEIGHT, WIGHT, content_img)
    
        with tf.Session() as sess:
            # 计算loss值
            content_neck, style_neck = get_neck(sess, model, content_img, style_img)
            cost = ALPHA * content_loss(sess, content_neck, model) + BETA * style_loss(sess, style_neck, model)
            optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)
    
            sess.run(tf.global_variables_initializer())
            sess.run(tf.assign(model['input'], rand_img))
            for step in range(TRAIN_STEPS):
                print(step)
                # 训练
                sess.run(optimizer)
    
                if step % 10 == 0:
                    img = sess.run(model['input'])
                    img += [128, 128, 128]
                    img = np.clip(img, 0, 255).astype(np.uint8)
                    name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"
                    img = img[0]
                    cv2.imwrite(name, img)
    
            img = sess.run(model['input'])
            img += [128, 128, 128]
            img = np.clip(img, 0, 255).astype(np.uint8)
            cv2.imwrite("D://end.jpg", img[0])
    
    main()



7 效果展示

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/184663.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

css引入的三种方式

css引入的三种方式 一、内联样式二、外部样式表三、 内部样式表总结trouble 一、内联样式 内联样式也被称为行内样式。它是将 CSS 样式直接应用于 HTML 元素的 style 属性中的一种方式 <p style"color: blue; font-size: 16px;">这是一个带有内联样式的段落。&…

安卓手机SD卡不小心删除了怎么办?几步轻松恢复数据!

随着科技的不断发展&#xff0c;安卓手机已经成为了我们生活中不可或缺的一部分。然而&#xff0c;在使用安卓手机的过程中&#xff0c;我们有时会不小心将重要的文件或者照片删除掉&#xff0c;这无疑会给我们的生活带来不便。那么&#xff0c;当安卓手机的SD卡不小心被删除了…

数字化转型没钱?没人?没IT?低代码平台轻松帮你搞定

随着数字技术的不断渗透&#xff0c;数字化已经不仅仅是一个趋势&#xff0c;而是深入人心的日常生活部分。在这样的时代背景下&#xff0c;企业面临的挑战也愈发严峻&#xff1a;如何不断创新&#xff0c;满足用户日益增长的业务需求&#xff1f; 传统的开发方式&#xff0c;随…

基于51单片机超声波测距汽车避障系统

**单片机设计介绍&#xff0c; 基于51单片机超声波测距汽车避障系统 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于51单片机的超声波测距汽车避障系统是一种用于帮助汽车避免碰撞和发生事故的设备&#xff0c;以下是一个基本…

操作系统的基本特性--并发、共享、虚拟、异步

批处理系统具有高资源利用率和系统吞吐量&#xff1b;分时系统能够获得及时响应&#xff1b;实时系统具有实时特征。而这三种系统都具有并发、共享、虚拟和异步四个基本特征 一、并发 OS通过并发提高系统中的资源利用率&#xff0c;增加系统的吞吐量 1.并行和并发 并行&…

11.7统一功能处理

一.登录拦截器 1.实现一个普通的类,实现HeadlerInterceptor接口,重写preHeadler方法. 2.将拦截器添加到配置中,并设定拦截规则. 二.访问前缀添加 方法1: 方法2:properties 三.统一异常处理 以上返回的是空指针异常,如果是别的异常就不会识别,建议加上最终异常 . 四.统一数据格…

Dockerfile-CentOS7.9+Python3.11.2

本文为CentOS7.9下安装Python3.11.2环境的Dockerfile # CentOS with Python3.11.2 # Author xxmail.com# build a new image with basic centos FROM centos:centos7.9.2009 # who is the author MAINTAINER xxmail.comRUN ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/…

2022年MathorCup高校数学建模挑战赛—大数据竞赛A题58到家家政服务订单分配问题求解全过程文档及程序

2022年MathorCup高校数学建模挑战赛—大数据竞赛 A题 58到家家政服务订单分配问题 原题再现&#xff1a; “58 到家”是“58 同城”旗下高品质、高效率的上门家政服务平台&#xff0c;平台向用户提供家政保洁、保姆、月嫂、搬家、维修等众多生活领域的服务。在家政保洁场景中…

App Inventor 2 文本转数字

App Inventor 2 是弱语言类型&#xff0c;文本和数字之间不用刻意去转换&#xff0c;之间赋值就可以了。文本赋值给数字变量如下&#xff1a; 运行结果&#xff1a;124 注意&#xff1a;数字变量初始化的时候要给一个数字的初始值&#xff0c;表明它是数字。 如果文本中含有非…

项目需求,我们加入了这个样式 float: left; 那么就会看到全部div处于同一行。但是实际应用中我们又有特殊div 需要单独 放置在一行

项目场景&#xff1a; 背景&#xff1a; 项目需求&#xff0c;我们加入了这个样式 float: left&#xff1b; 那么就会看到全部div处于同一行。但是实际应用中我们又有特殊div 需要单独 放置在一行 问题描述 提问题&#xff1a; 项目需求&#xff0c;我们加入了这个样式。 …

欲更新浏览器的Mac用户请注意,AMOS又出一招新“骗术”

近日&#xff0c;Malwarebytes发现有一种专门针对Mac操作系统&#xff08;OS&#xff09;的数据窃取程序正通过伪造的网页浏览器更新程序进行分发。Malwarebytes称这与其通常的技术、战术和程序大不相同&#xff0c;该恶意软件可以模仿 Safari 和谷歌 Chrome 浏览器。 网络安全…

【Hello Go】Go语言并发编程

并发编程 概述基本概念go语言的并发优势 goroutinegoroutine是什么创建goroutine如果主goroutine退出runtime包GoschedGoexitGOMAXPROCS channel无缓冲的channel有缓冲的channelrange和close单向channel 定时器TimerTicker Select超时 概述 基本概念 并行和并发概念 并行 &…

NX二次开发UF_CSYS_create_matrix 函数介绍

文章作者&#xff1a;里海 来源网站&#xff1a;https://blog.csdn.net/WangPaiFeiXingYuan UF_CSYS_create_matrix Defined in: uf_csys.h int UF_CSYS_create_matrix(const double matrix_values [ 9 ] , tag_t * matrix_id ) overview 概述 Creates a 3 x 3 matrix. 创建…

please upgrade numpy version to >=1.20

升级 upgrade numpy_升级numpy-CSDN博客 pip install numpy --upgrade 没有pip conda install numpy --upgrade 会报错 conda list numpy来查看numpy版本 似乎这个numpy要看numpy-base这个 似乎没有pip

2023年ESG投资研究报告

第一章 ESG投资概况 1.1 定义 ESG投资&#xff0c;亦称负责任投资&#xff0c;是一种融合环境&#xff08;Environment&#xff09;、社会&#xff08;Social&#xff09;和治理&#xff08;Governance&#xff09;考量的投资方法&#xff0c;旨在通过综合这些因素来优化投资…

<蓝桥杯软件赛>零基础备赛20周--第7周--栈和二叉树

报名明年4月蓝桥杯软件赛的同学们&#xff0c;如果你是大一零基础&#xff0c;目前懵懂中&#xff0c;不知该怎么办&#xff0c;可以看看本博客系列&#xff1a;备赛20周合集 20周的完整安排请点击&#xff1a;20周计划 每周发1个博客&#xff0c;共20周&#xff08;读者可以按…

全志D1芯片 MIPI屏幕TFT08006支持

屏幕简介 TFT08006官方支持的一款MIPI屏幕&#xff0c;8寸&#xff0c;分辨率800*1280。官方套装支持触控。 下载 MIPI屏幕 TFT08006 patch&#xff1a; https://www.aw-ol.com/downloads/resources/27 MIPI屏幕 TFT08006 相关资料见&#xff1a;https://www.aw-ol.com/down…

【Python】生死簿管理系统,估值5毛

生死簿管理系统 代码 """ 生死簿管理系统 """ import os import timefile_name data.txtdef main():while True:main_menu()choice (int)(input("请选择: "))if choice in [0, 1, 2, 3, 4, 5, 6, 7]:if choice 0:answer input(&…

连接docker swarm和凌鲨

docker swarm相比k8s而言&#xff0c;部署和使用都要简单很多&#xff0c;比较适合中小研发团队。 通过连接docker swarm和凌鲨&#xff0c;可以让研发过程中的常用操作更加方便。 更新容器镜像调整部署规模查看日志运行命令 使用步骤 部署swarm proxy 你可以通过linksaas…

无人机电力巡检系统运行流程全解读

随着电力行业体系不断完善&#xff0c;保障电网运营的安全成为至关重要的任务。传统的人工巡检方式在面对电力设备广泛分布和复杂工况时显得效率低下&#xff0c;为了解决这一难题&#xff0c;无人机电力巡检系统应运而生&#xff0c;以智能化的运行流程&#xff0c;为电网安全…