ShardingSphere系列四(Sharding-JDBC内核原理及核心源码解析)

文章目录

  • 1. ShardingSphere内核解析
    • 1.1 解析引擎
    • 1.2 路由引擎
    • 1.3 改写引擎
    • 1.4 执行引擎
    • 1.5 归并引擎
  • 2. ShardingSphere的SPI扩展点
    • 2.1 SPI机制
    • 2.2 ShardingSphere中的SPI扩展点
    • 2.3 实现自定义主键生成策略
  • 3. ShardingSphere源码

1. ShardingSphere内核解析

ShardingSphere虽然有多个产品,但是他们的数据分片主要流程是完全一致的。

1.1 解析引擎

解析引擎
解析过程分为词法解析和语法解析。 词法解析器用于将SQL拆解为不可再分的原子符号,称为Token。并根据不同数据库方言所提供的字典,将其归类为关键字,表达式,字面量和操作符。 再使用语法解析器将SQL转换为抽象语法树(简称AST,Abstract Syntax Tree)。

SQL解析是整个分库分表产品的核心,其性能和兼容性是最重要的衡量指标。ShardingSphere在1.4.x之前采用的是性能较快的Druid作为SQL解析器。1.5.x版本后,采用自研的SQL解析器,针对分库分表场景,采取对SQL半理解的方式,提高SQL解析的性能和兼容性。然后从3.0.x版本后,开始使用ANLTR作为SQL解析引擎。这是个开源的SQL解析引擎,ShardingSphere在使用ANLTR时,还增加了一些AST的缓存功能。针对ANLTR4的特性,官网建议尽量采用PreparedStatement的预编译方式来提高SQL执行的性能。

1.2 路由引擎

根据解析上下文匹配数据库和表的分片策略,生成路由路径。

ShardingSphere的分片路由策略主要分为单片路由(分片键的操作符是等号)、多片路由(分片键的操作符是IN)和范围路由(分片键的操作符是Between)。不携带分片键的SQL则是广播路由。

分片策略通常可以由数据库内置也可以由用户方配置。内置的分片策略大致可分为尾数取模、哈希、范围、标签、时间等。 由用户方配置的分片策略则更加灵活,可以根据使用方需求定制复合分片策略。

实际使用时,应尽量使用分片路由,明确路由策略。因为广播路由影响过大,不利于集群管理及扩展。
分片路由策略

  • 全库表路由:对于不带分片键的DQL、DML以及DDL语句,会遍历所有的库表,逐一执行。例如 select * from course 或者 select * from course where ustatus=‘1’(不带分片键)
  • 全库路由:对数据库的操作都会遍历所有真实库。 例如 set autocommit=0
  • 全实例路由:对于DCL语句,每个数据库实例只执行一次,例如CREATE USER customer@127.0.0.1 identified BY ‘123’;
  • 单播路由:仅需要从任意库中获取数据即可。 例如 DESCRIBE course
  • 阻断路由:屏蔽SQL对数据库的操作。例如 USE coursedb。就不会在真实库中执行,因为针对虚拟表操作,不需要切换数据库。

1.3 改写引擎

用户只需要面向逻辑库和逻辑表来写SQL,最终由ShardigSphere的改写引擎将SQL改写为在真实数据库中可以正确执行的语句。SQL改写分为正确性改写和优化改写。
改写引擎

1.4 执行引擎

ShardingSphere并不是简单的将改写完的SQL提交到数据库执行。执行引擎的目标是自动化的平衡资源控制和执行效率。例如他的连接模式分为内存限制模式(MEMORY_STRICTLY)和连接限制模式(CONNECTION_STRICTLY)。内存限制模式只关注一个数据库连接的处理数量,通常一张真实表一个数据库连接。而连接限制模式则只关注数据库连接的数量,较大的查询会进行串行操作。
执行引擎
ShardingSphere引入了连接模式的概念,分为内存限制模式(MEMORY_STRICTLY)和连接限制模式(CONNECTION_STRICTLY)。

这两个模式的区分涉及到一个参数spring.shardingsphere.props.max.connections.size.per.query=50(默认值1,配置参见源码中ConfigurationPropertyKey类)。ShardingSphere会根据 路由到某一个数据源的路由结果 计算出 所有需在数据库上执行的SQL数量,用这个数量除以 用户的配置项,得到每个数据库连接需执行的SQL数量。数量>1就会选择连接限制模式,数量<=1就会选择内存限制模式。

内存限制模式不限制连接数,也就是说会建立多个数据连接,然后并发控制每个连接只去读取一个数据分片的数据。这样可以最快速度的把所有需要的数据读出来。并且在后面的归并阶段,会选择以每一条数据为单位进行归并,就是后面提到的流式归并。这种归并方式归并完一批数据后,可以释放内存了,可以很好的提高数据归并的效率,并且防止出现内存溢出或垃圾回收频繁的情况。他的吞吐量比较大,比较适合OLAP场景。

连接限制模式会对连接数进行限制,也即是说至少有一个数据库连接会要去读取多个数据分片的数据。这样他会对这个数据库连接采用串行的方式依次读取多个数据分片的数据。而这种方式下,会将数据全部读入到内存,进行统一的数据归并,也就是后面提到的内存归并。这种方式归并效率会比较高,例如一个MAX归并,直接就能拿到最大值,而流式归并就需要一条条的比较。比较适合OLTP场景。

1.5 归并引擎

将从各个数据节点获取的多数据结果集,组合成为一个结果集并正确的返回至请求客户端,称为结果归并。

其中,流式归并是指以一条一条数据的方式进行归并,而内存归并是将所有结果集都查询到内存中,进行统一归并。

分布式主键:内置生成器支持:UUID、SNOWFLAKE,并抽离出分布式主键生成器的接口,方便用户自行实现自定义的自增主键生成器。

  • UUID:采用UUID.randomUUID()的方式产生唯一且不重复的分布式主键。最终生成一个字符串类型的主键。缺点是生成的主键无序。
  • SNOWFLAKE:雪花算法,能够保证不同进程主键的不重复性,相同进程主键的有序性。二进制形式包含4部分,从高位到低位分表为:1bit符号位、41bit时间戳位、10bit工作进程位以及12bit序列号位。
    • 符号位(1bit): 预留的符号位,恒为零。
    • 时间戳位(41bit):41位的时间戳可以容纳的毫秒数是2的41次幂,一年所使用的毫秒数是:365 * 24 * 60 * 60 * 1000 Math.pow(2, 41) / (365 * 24 * 60 * 60 * 1000L) =69.73年不重复;
    • 工作进程位(10bit):该标志在Java进程内是唯一的,如果是分布式应用部署应保证每个工作进程的id是不同的。该值默认为0,可通过属性设置。
    • 序列号位(12bit):该序列是用来在同一个毫秒内生成不同的ID。如果在这个毫秒内生成的数量超过4096(2的12次幂),那么生成器会等待到下个毫秒继续生成。
      雪花算法
      优点:
  • 毫秒数在高位,自增序列在低位,整个ID都是趋势递增的。
  • 不依赖第三方组件,稳定性高,生成ID的性能也非常高。
  • 可以根据自身业务特性分配bit位,非常灵活
    缺点:
  • 强依赖机器时钟,如果机器上时钟回拨,会导致发号重复。

2. ShardingSphere的SPI扩展点

ShardingSphere为了兼容更多的应用场景,在源码中保留了大量的SPI扩展点。所以在看源码之前,需要对JAVA的SPI机制有足够的了解。

2.1 SPI机制

SPI的全名为:Service Provider Interface。在java.util.ServiceLoader的文档里有比较详细的介绍。简单的总结下 Java SPI 机制的思想。我们系统里抽象的各个模块,往往有很多不同的实现方案,比如日志模块的方案,xml解析模块、jdbc模块的方案等。面向的对象的设计里,我们一般推荐模块之间基于接口编程,模块之间不对实现类进行硬编码。

一旦代码里涉及具体的实现类,就违反了可拔插的原则,如果需要替换一种实现,就需要修改代码。为了实现在模块装配的时候能不在程序里动态指明,这就需要一种服务发现机制。

Java SPI 就是提供这样的一个机制:为某个接口寻找服务实现的机制。有点类似IOC的思想,就是将装配的控制权移到程序之外,在模块化设计中这个机制尤其重要Java SPI 的具体约定为:当服务的提供者,提供了服务接口的一种实现之后,在jar包的META-INF/services/目录里同时创建一个以服务接口命名的文件。该文件里就是实现该服务接口的具体实现类。而当外部程序装配这个模块的时候,就能通过该jar包META-INF/services/里的配置文件找到具体的实现类名,并装载实例化,完成模块的注入。基于这样一个约定就能很好的找到服务接口的实现类,而不需要再代码里制定。jdk提供服务实现查找的一个工具类:java.util.ServiceLoader。

2.2 ShardingSphere中的SPI扩展点

ShardingSphere的开发思想是对源码中主体流程封闭,而对SPI开放。在配套的官方文档《shardingsphere_docs_cn.pdf》的开发者手册部分详细列出了ShardingSphere的所有SPI扩展点。

2.3 实现自定义主键生成策略

使用ShardingSphere提供的SPI扩展点,实现自定义分布式主键生成策略。

3. ShardingSphere源码

ShardingSphere 5.2.0源码下载
ShardingSphere源码目录结构

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/18088.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SuperMap GIS基础产品桌面GIS FAQ集锦(2)

SuperMap GIS基础产品桌面GIS FAQ集锦&#xff08;2&#xff09; 【iDesktop】【10.2.1】【11.0.1】 请问在 iDesktop 桌面端对线数据集进行打断线操作后&#xff0c;打断的线不显示是什么原因呢&#xff1f; 【问题原因】 当时操作的线数据集空间索引存在异常&#xff0c;导致…

PostgreSQL 新闻速递 谷歌基于POSTGRESQL 兼容数据库提供更大规模的数据库服务

开头还是介绍一下群&#xff0c;如果感兴趣polardb ,mongodb ,mysql ,postgresql ,redis 等有问题&#xff0c;有需求都可以加群群内有各大数据库行业大咖&#xff0c;CTO&#xff0c;可以解决你的问题。加群请联系 liuaustin3 &#xff0c;在新加的朋友会分到2群&#xff08;共…

初级算法-贪心算法

主要记录算法和数据结构学习笔记&#xff0c;新的一年更上一层楼&#xff01; 初级算法-贪心算法 一、分发饼干二、摆动序列三、最大子序和四、买卖股票最佳时机五、跳跃游戏六、跳跃游戏二七、k次取反后最大化的数组和八、加油站九、分发糖果十、柠檬水找零十一、根据身高重建…

David Silver Lecture 4: Model-Free Prediction

1 Introduction 任务&#xff1a;第三章使用动态规划方法&#xff0c;解决known的MDP问题&#xff0c;这章通过model free prediction对一个unknown的MDP估计他的value function。下一章通过Model free control的方法针对一个unknown的MDP optimise value function。 2 Monte…

Android类似微信聊天页面教程(Kotlin)五——选择发送图片

前提条件 安装并配置好Android Studio Android Studio Electric Eel | 2022.1.1 Patch 2 Build #AI-221.6008.13.2211.9619390, built on February 17, 2023 Runtime version: 11.0.150-b2043.56-9505619 amd64 VM: OpenJDK 64-Bit Server VM by JetBrains s.r.o. Windows 11 …

paddleLite在Android部署初体验(环境问题)

paddleLite初体验&#xff08;环境问题&#xff09; Android Studio下载Paddle Lite Demo打开项目环境配置下载到手机 Paddle Lite是百度开发的一种方便部署的深度学习推理框架&#xff0c;笔者最近想接触一些模型部署相关项目&#xff0c;就先接触了一下Paddle Lite&#xff0…

eks实践案例

Eks&#xff1a; ami-0c23197c88296c1b5 eks集群&#xff1a; 拉面 - 知乎 https://blog.csdn.net/saynaihe/category_12204222.html 什么是 Amazon EKS&#xff1f; - Amazon EKS kubectl 使用指南 https://zhuanlan.zhihu.com/p/364994610 k8s HPA自动伸缩 手把手教你 K8…

【花雕学AI】我们如何才能避免被ChatGPT替代?——一个跨学科的视角

ChatGPT是一个由OpenAI开发的AI文本工具&#xff0c;它可以理解和生成自然语言&#xff0c;从而与用户进行对话。ChatGPT是基于GPT-3或者GPT-4模型的&#xff0c;这是目前最大和最先进的语言模型之一。ChatGPT通过在大量的互联网文本数据上进行预训练和强化学习&#xff0c;学习…

Mongodb 在工业场景下的数字解决方案

开头还是介绍一下群&#xff0c;如果感兴趣polardb ,mongodb ,mysql ,postgresql ,redis 等有问题&#xff0c;有需求都可以加群群内有各大数据库行业大咖&#xff0c;CTO&#xff0c;可以解决你的问题。加群请联系 liuaustin3 &#xff0c;在新加的朋友会分到2群&#xff08;共…

UICollectionView 实现整页翻动(每页3个cell)

提示&#xff1a;页面架构是通过UICollectionView做的分页&#xff0c;分页点PageControl使用的是<SDCycleScrollView/TAPageControl.h> &#xff0c;布局架构使用的是Masonry 前言 为了实现UICollectionView无限翻动&#xff0c;连续滑动&#xff0c;主要是利用pagingE…

2023年计算机视觉与模式识别国际会议(CCVPR 2023)

会议简介 Brief Introduction 2023年计算机视觉与模式识别国际会议(CCVPR 2023) 会议时间&#xff1a;2023年9月15日-17日 召开地点&#xff1a;英国牛津 大会官网&#xff1a;www.ccvpr.org 计算机视觉技术与模式识别是现代科学中备受关注的热点技术&#xff0c;它的革新对各行…

改写句子的软件有哪些-免费改写文章的软件

改写句子的软件 改写句子的软件是一种广泛应用于文字处理的工具&#xff0c;其主要作用是通过对原文中的语言结构和表述方式进行调整和优化&#xff0c;以改进文章的质量和可读性。改写句子的软件广泛用于新闻报道、科学文章、学术论文、书籍等各类文本材料中&#xff0c;旨在…

港科夜闻|广东省委常委、副省长王曦到访香港科技大学

关注并星标 每周阅读港科夜闻 建立新视野 开启新思维 1、广东省委常委、副省长王曦到访香港科技大学。在香港科大校长、粤港澳大湾区院士联盟理事会主席叶玉如教授陪同下&#xff0c;王曦常委率代表团参观国家级科研设施和了解学校发展情况&#xff0c;并与在港中国科学院院士座…

分享kubernetes部署:cachecloud部署说明

cachecloud部署 cachecloud是搜狐视频(sohutv)Redis私有云平台 已省略~ 挑选一台服务器部署cachecloud-web 将cachecloud-web打成war包&#xff0c;可以在服务器上打包&#xff0c;也可以在本地打包&#xff0c;这里举一个在服务器上打包的例子。 将源代码下载到/opt下 已省略~…

使用 SaleSmartly 实时聊天提高转化率

在竞争激烈的电子商务环境中&#xff0c;很难给客户留下持久的印象&#xff0c;与他们建立关系更加困难。但是&#xff0c;提供个性化的体验和产品是超越竞争对手的最佳方式之一。这就是为什么许多跨境电子商务企业将与客户的个性化沟通作为他们的首要任务。 SaleSmartly&#…

【Java数据结构】优先级队列(堆)

优先级队列&#xff08;堆&#xff09; 概念模拟实现堆的概念堆的存储方式堆的创建向下调整堆的创建建堆的时间复杂度 堆的插入和删除堆的插入堆的删除 用堆模拟实现优先级队列 常用接口PriorityQueue的特性PriorityQueue常用接口介绍构造方法插入/删除/获取优先级最高的元素 P…

Lecture 14:Life-long Learning

目录 Catastrophic Forgetting 灾难性遗忘(Catastrophic Forgetting)的克服之道 Selective Synaptic Plasticity Additional Neural Resource Allocation Memory Reply 其他 Catastrophic Forgetting ——为什么今日的人工智慧无法成为天网&#xff1f;灾难性遗忘 Life…

2-Lampiao百个靶机渗透(精写-思路为主)框架漏洞利用2

特别注明&#xff1a;本文章只用于学习交流&#xff0c;不可用来从事违法犯罪活动&#xff0c;如使用者用来从事违法犯罪行为&#xff0c;一切与作者无关。 文章目录 前言一、环境重新部署二、AWVSxray联动和xraybs联动1.安装AWVSxray2.让xray和bs先联动3.AWVS和xray联动 三、p…

Camtasia2023官方中文版免费下载

在现在的网络互联网时代&#xff0c;越来越多的人走上了自媒体的道路。有些自媒体人会自己在网络上录制精彩视频&#xff0c;也有一些人会将精彩、热门的电影剪辑出来再加上自己给它的配音&#xff0c;做成大家喜欢看的电影剪辑片段。相信不管大家是自己平时有独特的爱好也好、…

欧科云链OKLink:2023年4月安全事件盘点

一、基本信息 2023年4月安全事件共造约6000万美金的损失&#xff0c;与上个月相比&#xff0c;损失金额有所降落&#xff0c;但安全事件数量依旧不减。其中&#xff0c;Yearn Finance因参数配置错误&#xff0c;导致了1000多万美金的损失。同时&#xff0c;有一些已经出现过的…