TransFusionNet:JetsonTX2下肝肿瘤和血管分割的语义和空间特征融合框架

TransFusionNet: Semantic and Spatial Features Fusion Framework for Liver Tumor and Vessel Segmentation Under JetsonTX2

  • TransFusionNet:JetsonTX2下肝肿瘤和血管分割的语义和空间特征融合框架
    • 背景
    • 贡献
    • 实验
    • 方法
      • Transformer-Based Semantic Feature Extraction Module(transformer语义特征提取模块)
      • Local Spatial Feature Extraction Module(局部空间特征提取模块)
      • Edge Extraction Module(边缘提取模块)
      • Multi-Scale Feature Fusing Module(多尺度特征融合模块)
      • Multi Task Training Strategy(多任务训练策略)
      • Applying Transfer Learning to TransFusionNet(迁移学习在TransFusionNet上的应用)
      • Quantification and Fine-Tuning of Inference Models(推理模型的量化与微调)
    • 损失函数
    • Thinking

TransFusionNet:JetsonTX2下肝肿瘤和血管分割的语义和空间特征融合框架

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 27, NO. 3, MARCH 2023

背景

CT图像中肝脏肿瘤和血管的分割和重建可以为医生的术前计划和手术干预提供便利。介绍了一个TransFusionNet框架,该框架由语义特征提取模块局部空间特征提取模块边缘特征提取模块多尺度特征融合模块组成,以实现肝脏肿瘤和血管的细粒度分割。此外,我们将迁移学习方法应用于使用公共数据集进行预训练,然后对模型进行微调,以进一步提高拟合效果。此外,我们提出了一种智能量化方案来压缩模型权重,并在JetsonTX2上实现了高性能推理。TransFusionNet框架在血管分割任务中实现了0.854的平均IoU,在肝肿瘤分割任务中获得了0.927的平均IoU。在分析量化推理的计算性能时,我们的量化模型在NVIDIA RTX3090的Node上实现了4TFLOP,在JetsonTX2上实现了132GFLOP。这种前所未有的分割效果在一定程度上解决了自动分割的准确性和性能瓶颈。
需要解决的问题:
(1)如何设计一种准确、快速的肝肿瘤血管自动分割和三维重构方法?
(2) 如何设计一个能够学习空间语义融合特征的分割框架,以提高肿瘤和血管细节的分割精度?
(3) 如何设计高效的模型量化方法,实现肿瘤和血管的高性能模型推断和3D重建?
(4) 如何优化模型的计算和存储开销,以构建轻量级模型并将分割模型部署到JetsonTX2设备?

贡献

1)我们提出了TransFusionNet框架,该框架结合了CT图像的空间语义边缘特征,实现了对肝脏肿瘤肝内动脉血管系统的精确精细分割。
2) 我们提出了一种基于强化学习智能量化方案来压缩模型的权重,使模型在JetsonTX2和NVIDIA RTX3090 GPU的节点上都达到了最佳的推理性能。
3) 通过仔细量化,我们的模型使用NVIDIA RTX3090 GPU和JetsonTX2设备在Node上实现了高性能的肝血管肿瘤推断和三维重建。

实验

数据集:LITS(肝和肝肿瘤分割,https://competitions.codalab.org/competitions/17094)数据集包含130例肿瘤、转移瘤和囊肿。这些CT扫描具有较大的空间分辨率和视场(FOV)差异[4]。
3Dircadb(用于算法数据库比较的3D图像重建,https://www.ircad.fr/research/3d-ircadb-01/)是一个公共数据集,可用于训练和测试肝血管分割方法,包括20名不同图像分辨率、血管结构、强度分布和肝血管对比CT增强的患者[29]。
同时,我们收集了18例患者的CT增强图像,并构建了肝肿瘤血管(LTBV)数据集。为了清楚地区分肝脏中的血管并减轻标记负担,我们只保留了18名患者的动脉期图像。由于可训练样本的稀缺性,我们只分为训练数据集和测试数据集。我们使用这两个数据集进行模型预训练,并使用我们的私人数据集对肝动脉和肿瘤分割任务的模型进行微调训练。以上三个数据集按照8:2的比例分为训练集和测试集。

在这里插入图片描述
消融实验
在这里插入图片描述

方法

在这里插入图片描述

Transformer-Based Semantic Feature Extraction Module(transformer语义特征提取模块)

有效解决了传统深度CNN网络中感知场缺陷导致的信息缺失问题
可以学习全局特征表示的编码器,该编码器由基于特征提取主干的特征嵌入模块基于Transformer感测图像的语义相关信息表示的特征提取模块组成[31]。该模块采用了一种全新的特征提取思想,通过对图片特征进行语义表示,并学习语义特征的全局表示。

Local Spatial Feature Extraction Module(局部空间特征提取模块)

在这里插入图片描述
基于Transformer的特征提取模块是一个非常强大的语义信息特征提取模块,因为Transformer特征提取模块在学习语义相关特征方面具有优势。然而,在许多方面,Transformer并不是传统卷积运算的有效替代品。对于提取一些图像中更细微的特征,如感兴趣区域的特征和微小血管的特征,CNN是一个完美的解决方案。我们设计了一种基于多层SEBottleNet堆叠的局部残差网络编码器。我们在BottleNet中引入了挤压和激励(SE)[51],以增强特征图通道之间的相互依赖性
确保每个模块都有不同的特征提取任务。我们在模块中间引入了挤压和激励模块,以更好地学习特征图通道维度的重要性,从而使SEBottleNet在特征提取过程中具有更强的学习重点。通过SEBottleNet和maxpool的连续叠加,编码器可以连续提取输入CT图像的局部特征表示。同时,由于每个SEBottleNet都设置了剩余连接,这使编码器能够有效地缓解网络深化带来的降级问题。

Edge Extraction Module(边缘提取模块)

由于肝动脉血管非常小,因此进一步细化血管和肝脏的分割是一项具有挑战性的任务。为了让模型能够学习更详细的空间特征,我们引入了EEM,它专门用于学习感兴趣的血管和肿瘤区域的边缘特征,并将边缘特征融合到分割网络中。
在这里插入图片描述
EEM以特征提取层的特征图Canny算法[18]提取的CT边缘图(图3(b))为输入,预测边缘结果e∈RH×W。该模块预测边缘信息,并将预测的特征图组合到分割网络中。为了完成这项任务,我们处理分割注释以获得边缘注释er(图第3(d)段),它可以用作该模块的监督条件

在本模块中,我们使用了门控激励卷积(GEC)层。GEC是EEM中最重要的单元,它可以过滤掉一些不相关的信息,集中精力提取图像的边缘特征。GEC应用于EEM和特征提取模块之间。它使用门控机制来停用其自身的激活,这些激活被提取模块[52]中包含的高级信息认为不相关。同时,我们在门控激活层中引入了一个激励模块,以学习不同特征图的重要性。
在这里插入图片描述

从理论上讲,GEC可以简单地看作是对特征图的空间维度和通道维度的关注的集合。通过GEC运算,注意力图αi选择性地保留了边缘语义特征。我们取消了对特征提取器的浅层特征图的GEC操作,因为馈送到卷积层的图像主要学习一般的低级特征,同时,输出的特征图保留了丰富的边缘信息。随着网络的深入,特征图将保留高级特征。在理论上,使用GEC运算可以有效地对高级特征的有用边缘信息进行加权
在这里插入图片描述
Canny算子可以有效地滤除图像中不相关的特征,得到如图所示的Canny图像。第3(b)段。我们认为它适用于医学图像分割。因此,我们首先将canny图像和最后一个GEC模块输出en连接起来。然后,我们将它们与两个特征提取器的输出特征图一起提供给融合模块。同时,边缘提取模块以边缘损失为损失函数以边缘标签为监督,对预测边缘图进行优化

Multi-Scale Feature Fusing Module(多尺度特征融合模块)

多尺度特征融合解码模块,以对三个模块学习到的语义特征进行采样。该模块将三个模块提取的特征图作为输入,并输出预测的类别分布图
在这里插入图片描述
主要融合三个特征提取模块的特征图。参考空间金字塔池(SPP)来设计模块。首先,该模块使用C1×1和C3×3卷积分别从语义特征图空间特征图的拼接结果中提取特征。接下来,我们将其输入到池化层,并融合边缘特征图。通过上述操作,获得了三个不同感受野的特征图。最后,我们对这三个特征图进行采样并连接,以输出融合的特征图。从理论上讲,这些模块输出的特征图可以保留丰富的空间特征语义相关特征边缘特征。在连续融合不同尺度的低级特征图后,解码器可以从粗到细地学习图像的语义信息。

Multi Task Training Strategy(多任务训练策略)

分割任务、边界任务、
优化过程中,特征提取模块和边缘提取模块的参数将基于损失进行优化。接下来,我们将边缘提取模块输出的特征图输入到融合模块中,以预测分割结果。因此,边缘提取模块学习到的先验知识保留在y中。同时,在优化过程中,分割损失会更加关注边缘特征

Applying Transfer Learning to TransFusionNet(迁移学习在TransFusionNet上的应用)

由于癌症筛查后增强CT图像的稀缺性以及肿瘤和血管的标记困难,我们获得了18例患者的CT图像。数据过少将不可避免地影响模型的性能,并加深过度拟合问题。为此,我们引入了一种迁移学习策略,该策略不需要具有确切代表性的训练数据,并且能够利用数据集之间的相似性,在模型的训练阶段捕获特定的先验知识,以构建新的分割模型

首先使用公共数据集LITS和3Dircadb对模型进行预训练,分别获得肝脏肿瘤分割模型和肝脏血管分割模型。然后,我们使用我们的肝脏肿瘤数据和肝脏血管数据来重新训练通过预训练获得的模型。当我们需要对肝脏肿瘤和CT图像的血管进行分割时,我们只需要输入一张CT图像,模型就会分别对CT图像中的肿瘤和血管部分进行分割。

Quantification and Fine-Tuning of Inference Models(推理模型的量化与微调)

提出了一种基于硬件感知自动量化(HAQ)[55]的模型量化方案,以压缩框架的CNN和密集层,并优化计算和存储开销
在这里插入图片描述

损失函数

分割损失
在这里插入图片描述
边界损失
在这里插入图片描述
形状正则化损失,y是预测的分割图,e是预测的边缘图。在模型训练开始时,由于边缘提取模块是随机初始化的,无法准确预测e,(10)不起任何作用。因此,我们引入了一种动态调整策略,在100个历元之前将λ4设置为0,在100历元之后将λ4≥0
在这里插入图片描述

Thinking

双编码器分支,语义特征编码器在中间层加入Transformer,SEBottleNet分支提取局部特征,融合模块,边界特征提取模块,用标签的canny边缘图作为监督

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/179520.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于Haclon的Blob分析

任务要求: 请用BLOB分析的方法计算图中所有灰度值在120和255之间的像素构成的8连通区域的面积与中心点坐标。 Blob基础: 分析过程:首先获取图像,然后根据特征对原始图像进行阈值分割(区分背景像素和前景像素&#xf…

allegro画封装时使用坐标指令无效

使用坐标指令时显示:“Pick is outside the extent of the drawing…pick again” 这是因为你放的引脚已经超出你这个绘制界面的定义尺寸,需要到Setup->Design pararmeters…里面去将图幅改大一点,如下图所示: 然后点击Design…

office 365企业版安装教程

1.下载所需工具(防火墙和防毒软件记得关闭) 下载链接:所需文件 2.安装激活office 1.安装 office tool plus 2.已安装过office 先进行office的移除,再进行未安装office的步骤进行 3.未安装过office 1.设置部署 按照以下来进行安…

工业I/O模块的功能和应用介绍

在工业领域中,不同的设备常常适配不同的通信协议,不同的协议之间无法直接互通,导致现场实施过程中困难重重。工业io模块可以将各种现场信号转化为数字信号,然后传输给控制器进行处理,实现不同设备之间的互通&#xff0…

梁培强:塑造下一代投资高手

在当前全球经济动荡和金融市场快速变化的背景下,梁培强的投资教育计划不仅仅是一套课程,它是对传统投资理念的深度挑战和革新。梁培强,拥有超过二十年金融行业经验的资深分析师,正在引领一场投资者教育的变革,旨在培养…

MongoDB——索引(单索引,复合索引,索引创建、使用)

MongoDB索引 官方文档 https://docs.mongodb.com/manual/indexes/#create-an-index 默认索引 _id index Mongodb 在 collection 创建时会默认建立一个基于_id 的唯一性索引作为 document 的 primarykey,这个 index 无法被删除 单个字段索引 单字段索引是 Mongo…

2023 年 亚太赛 APMCM (B题)国际大学生数学建模挑战赛 |数学建模完整代码+建模过程全解全析

当大家面临着复杂的数学建模问题时,你是否曾经感到茫然无措?作为2022年美国大学生数学建模比赛的O奖得主,我为大家提供了一套优秀的解题思路,让你轻松应对各种难题。 问题一: 建立没有作物的玻璃温室内的温度和风速分…

【用unity实现100个游戏之16】Unity中程序化生成的2D地牢4(附项目源码)

文章目录 最终效果前言素材按程序放置物品放置玩家和敌人控制主角移动参考源码完结 最终效果 前言 本期紧跟着上期内容,主要实现在地牢中生成物品、放置玩家和敌人。 素材 物品素材: https://itch.io/c/1597630/super-retro-world 按程序放置物品 …

【钉钉】通过链接方式跳转到应用机器人聊天窗口

使用这个方式: dingtalk://dingtalkclient/action/jumprobot?dingtalkid可以通过机器人回调拿到chatbotUserId这个字段,这个就是dingtalkid。 示例:(chatbotUserId是不规则字符串,链接拼上这个参数最好 urlencode一…

维护工程师面经

文章目录 前言技能要求数据结构定义分类常用的数据结构 数据库原理数据的三级模式结构事务查询方式视图数据库范式 Java相关知识点总结 前言 本博客仅做学习笔记,如有侵权,联系后即刻更改 科普: 参考网址 技能要求 数据结构 参考网址 定…

使用 Python脚本在3DMAX中加载图像和读取图像中的像素值

如何使用Python在3dmax中加载和显示图像文件?我们先看下面的代码: *测试的3dmax文件和图像文件位于同一目录中。 from MaxPlus import BitmapManagerimage_file_path rje_gray_02_4k.exrbmp_storage MaxPlus.Factory.CreateStorage(17)bmp_info bmp…

高斯Filter 和 Bilateral Filter

参考链接: Python | Bilateral Filtering - GeeksforGeeks 高斯Filter: 高斯模糊后的图像中的每个像素的强度是由它周围的像素的加权平均得到的,这个权重就是高斯函数的值,它取决于像素之间的距离。具体来说: 通常会导…

【追求卓越11】算法--二叉树

引导 接下来的几节我们开始介绍非线性的数据结构--树。树的内容比较多也比较复杂。本节,我们只需要了解关于树的一些基本概念。以及再进一步了解树的相关内容--搜索二叉树。该类型二叉树在工作中,是我们常接触的。该节我们介绍关于搜索二叉树的相关操作&…

1992-2021年省市县经过矫正的夜间灯光数据(GNLD、VIIRS)

1992-2021年省市县经过矫正的夜间灯光数据(GNLD、VIIRS) 1、时间:1992-2021年3月,其中1992-2013年为年度数据,2013-2021年3月为月度数据 2、来源:DMSP、VIIRS 3、范围:分区域汇总&#xff1a…

opencv-图像金字塔

图像金字塔是一种图像处理技术,它通过不断降低图像的分辨率,形成一系列图像。金字塔分为两种类型:高斯金字塔和拉普拉斯金字塔。 高斯金字塔(Gaussian Pyramid): 高斯金字塔是通过使用高斯滤波和降采样&a…

计算机网络之概述

一、概述 1.1因特网概述 定义 网络(Network)由若干结点(Node)和连接这些结点的链路(Link)组成。多个网络还可以通过路由器互连起来,这样就构成了一个覆盖范围更大的网络,即互联网(或互连网)因此,互联网是“网络的网络…

企业该怎么选择IP证书

IP证书是一种数字证书,它由权威的数字证书颁发机构(CA)颁发,部署在只有公网IP地址的站点上,用于在网络中验证身份和保护信息安全。IP证书可以在各种场景下保护网站的信息安全,比如网站vip登录,线…

【docker】docker总结

一、Docker简介 Docker是开源应用容器引擎,轻量级容器技术。基于Go语言,并遵循Apache2.0协议开源Docker可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中,然后发布到任何流行的Linux系统上,也可以实现虚拟化容…

【计算机基础】通过插件plantuml,实现在VScode里面绘制状态机

📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨ 📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍…

DockerHub 无法访问 - 解决办法

背景 DockerHub 镜像仓库地址 https://hub.docker.com/ 突然就无法访问了,且截至今日(2023/11)还无法访问。 这对我们来说,还是有一些影响的: ● 虽然 DockerHub 页面无法访问,但是还是可以下载镜像的,只是比较慢而已 ● 没法通过界面查询相关镜像,或者维护相关镜像了…