9.4 Windows驱动开发:内核PE结构VA与FOA转换

本章将继续探索内核中解析PE文件的相关内容,PE文件中FOA与VA,RVA之间的转换也是很重要的,所谓的FOA是文件中的地址,VA则是内存装入后的虚拟地址,RVA是内存基址与当前地址的相对偏移,本章还是需要用到《内核解析PE结构导出表》中所封装的KernelMapFile()映射函数,在映射后对其PE格式进行相应的解析,并实现转换函数。

首先先来演示一下内存VA地址与FOA地址互相转换的方式,通过使用WinHEX打开一个二进制文件,打开后我们只需要关注如下蓝色注释为映像建议装入基址,黄色注释为映像装入后的RVA偏移。

通过上方的截图结合PE文件结构图我们可得知0000158B为映像装入内存后的RVA偏移,紧随其后的00400000则是映像的建议装入基址,为什么是建议而不是绝对?别急后面慢来来解释。

通过上方的已知条件我们就可以计算出程序实际装入内存后的入口地址了,公式如下:
VA(实际装入地址) = ImageBase(基址) + RVA(偏移) => 00400000 + 0000158B = 0040158B

找到了程序的OEP以后,接着我们来判断一下这个0040158B属于那个节区,以.text节区为例,下图我们通过观察区段可知,第一处橙色位置00000B44 (节区尺寸),第二处紫色位置00001000 (节区RVA),第三处00000C00 (文件对齐尺寸),第四处00000400 (文件中的偏移),第五处60000020 (节区属性)

得到了上方text节的相关数据,我们就可以判断程序的OEP到底落在了那个节区中,这里以.text节为例子,计算公式如下:

虚拟地址开始位置:节区基地址 + 节区RVA => 00400000 + 00001000 = 00401000
虚拟地址结束位置:text节地址 + 节区尺寸 => 00401000 + 00000B44 = 00401B44

经过计算得知 .text 节所在区间(401000 - 401B44) 你的装入VA地址0040158B只要在区间里面就证明在本节区中,此处的VA地址是在401000 - 401B44区间内的,则说明它属于.text节。

经过上面的公式计算我们知道了程序的OEP位置是落在了.text节,此时你兴致勃勃的打开x64DBG想去验证一下公式是否计算正确不料,这地址根本不是400000开头啊,这是什么鬼?

上图中出现的这种情况就是关于随机基址的问题,在新版的VS编译器上存在一个选项是否要启用随机基址(默认启用),至于这个随机基址的作用,猜测可能是为了防止缓冲区溢出之类的烂七八糟的东西。

为了方便我们调试,我们需要手动干掉它,其对应到PE文件中的结构为 IMAGE_NT_HEADERS -> IMAGE_OPTIONAL_HEADER -> DllCharacteristics 相对于PE头的偏移为90字节,只需要修改这个标志即可,修改方式 x64:6081 改 2081 相对于 x86:4081 改 0081 以X86程序为例,修改后如下图所示。

经过上面对标志位的修改,程序再次载入就能够停在0040158B的位置,也就是程序的OEP,接下来我们将通过公式计算出该OEP对应到文件中的位置。

.text(节首地址) = ImageBase + 节区RVA => 00400000 + 00001000 = 00401000
VA(虚拟地址) = ImageBase + RVA(偏移) => 00400000 + 0000158B = 0040158B
RVA(相对偏移) = VA - (.text节首地址) => 0040158B - 00401000 = 58B
FOA(文件偏移) = RVA + .text节对应到文件中的偏移 => 58B + 400 = 98B

经过公式的计算,我们找到了虚拟地址0040158B对应到文件中的位置是98B,通过WinHEX定位过去,即可看到OEP处的机器码指令了。

接着我们来计算一下.text节区的结束地址,通过文件的偏移加上文件对齐尺寸即可得到.text节的结束地址400+C00= 1000,那么我们主要就在文件偏移为(98B - 1000)在该区间中找空白的地方,此处我找到了在文件偏移为1000之前的位置有一段空白区域,如下图:

接着我么通过公式计算一下文件偏移为0xF43的位置,其对应到VA虚拟地址是多少,公式如下:

.text(节首地址) = ImageBase + 节区RVA => 00400000 + 00001000 = 00401000
VPK(实际大小) = (text节首地址 - ImageBase) - 实际偏移 => 401000-400000-400 = C00
VA(虚拟地址) = FOA(.text节) + ImageBase + VPK => F43+400000+C00 = 401B43

计算后直接X64DBG跳转过去,我们从00401B44的位置向下全部填充为90(nop),然后直接保存文件。

再次使用WinHEX查看文件偏移为0xF43的位置,会发现已经全部替换成了90指令,说明计算正确。

到此文件偏移与虚拟偏移的转换就结束了,那么这些功能该如何实现呢,接下来将以此实现这些转换细节。

9.4.1 FOA偏移转换为VA偏移

首先来实现将FOA地址转换为VA地址,这段代码实现起来很简单,如下所示,此处将dwFOA地址0x84EC00转换为对应内存的虚拟地址。

NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
    DbgPrint("hello lyshark \n");

    NTSTATUS status = STATUS_SUCCESS;
    HANDLE hFile = NULL;
    HANDLE hSection = NULL;
    PVOID pBaseAddress = NULL;
    UNICODE_STRING FileName = { 0 };

    // 初始化字符串
    RtlInitUnicodeString(&FileName, L"\\??\\C:\\Windows\\System32\\ntoskrnl.exe");

    // 内存映射文件
    status = KernelMapFile(FileName, &hFile, &hSection, &pBaseAddress);
    if (!NT_SUCCESS(status))
    {
        return 0;
    }

    // 获取PE头数据集
    PIMAGE_DOS_HEADER pDosHeader = (PIMAGE_DOS_HEADER)pBaseAddress;
    PIMAGE_NT_HEADERS pNtHeaders = (PIMAGE_NT_HEADERS)((PUCHAR)pDosHeader + pDosHeader->e_lfanew);
    PIMAGE_SECTION_HEADER pSection = IMAGE_FIRST_SECTION(pNtHeaders);
    PIMAGE_FILE_HEADER pFileHeader = &pNtHeaders->FileHeader;

    DWORD64 dwFOA = 0x84EC00;

    DWORD64 ImageBase = pNtHeaders->OptionalHeader.ImageBase;
    DWORD NumberOfSectinsCount = pNtHeaders->FileHeader.NumberOfSections;
    DbgPrint("镜像基址 = %p | 节表数量 = %d \n", ImageBase, NumberOfSectinsCount);

    for (int each = 0; each < NumberOfSectinsCount; each++)
    {
        DWORD64 PointerRawStart = pSection[each].PointerToRawData;                                // 文件偏移开始位置
        DWORD64 PointerRawEnds = pSection[each].PointerToRawData + pSection[each].SizeOfRawData;  // 文件偏移结束位置
        // DbgPrint("文件开始偏移 = %p | 文件结束偏移 = %p \n", PointerRawStart, PointerRawEnds);

        if (dwFOA >= PointerRawStart && dwFOA <= PointerRawEnds)
        {
            DWORD64 RVA = pSection[each].VirtualAddress + (dwFOA - pSection[each].PointerToRawData);     // 计算出RVA
            DWORD64 VA = RVA + pNtHeaders->OptionalHeader.ImageBase;                                     // 计算出VA
            DbgPrint("FOA偏移 [ %p ] --> 对应VA地址 [ %p ] \n", dwFOA, VA);
        }
    }

    ZwUnmapViewOfSection(NtCurrentProcess(), pBaseAddress);
    ZwClose(hSection);
    ZwClose(hFile);

    Driver->DriverUnload = UnDriver;
    return STATUS_SUCCESS;
}

运行效果如下所示,此处之所以出现两个结果是因为没有及时返回,一般我们取第一个结果就是最准确的;

9.4.2 VA偏移转换为FOA偏移

将VA内存地址转换为FOA文件偏移,代码与如上基本保持一致。

NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
    DbgPrint("hello lyshark \n");

    NTSTATUS status = STATUS_SUCCESS;
    HANDLE hFile = NULL;
    HANDLE hSection = NULL;
    PVOID pBaseAddress = NULL;
    UNICODE_STRING FileName = { 0 };

    // 初始化字符串
    RtlInitUnicodeString(&FileName, L"\\??\\C:\\Windows\\System32\\ntoskrnl.exe");

    // 内存映射文件
    status = KernelMapFile(FileName, &hFile, &hSection, &pBaseAddress);
    if (!NT_SUCCESS(status))
    {
        return 0;
    }

    // 获取PE头数据集
    PIMAGE_DOS_HEADER pDosHeader = (PIMAGE_DOS_HEADER)pBaseAddress;
    PIMAGE_NT_HEADERS pNtHeaders = (PIMAGE_NT_HEADERS)((PUCHAR)pDosHeader + pDosHeader->e_lfanew);
    PIMAGE_SECTION_HEADER pSection = IMAGE_FIRST_SECTION(pNtHeaders);
    PIMAGE_FILE_HEADER pFileHeader = &pNtHeaders->FileHeader;

    DWORD64 dwVA = 0x00007FF6D3389200;
    DWORD64 ImageBase = pNtHeaders->OptionalHeader.ImageBase;
    DWORD NumberOfSectinsCount = pNtHeaders->FileHeader.NumberOfSections;
    DbgPrint("镜像基址 = %p | 节表数量 = %d \n", ImageBase, NumberOfSectinsCount);

    for (DWORD each = 0; each < NumberOfSectinsCount; each++)
    {
        DWORD Section_Start = ImageBase + pSection[each].VirtualAddress;                                  // 获取节的开始地址
        DWORD Section_Ends = ImageBase + pSection[each].VirtualAddress + pSection[each].Misc.VirtualSize; // 获取节的结束地址

        DbgPrint("Section开始地址 = %p | Section结束地址 = %p \n", Section_Start, Section_Ends);

        if (dwVA >= Section_Start && dwVA <= Section_Ends)
        {
            DWORD RVA = dwVA - pNtHeaders->OptionalHeader.ImageBase;                                    // 计算RVA
            DWORD FOA = pSection[each].PointerToRawData + (RVA - pSection[each].VirtualAddress);       // 计算FOA
            
            DbgPrint("VA偏移 [ %p ] --> 对应FOA地址 [ %p ] \n", dwVA, FOA);
        }
    }

    ZwUnmapViewOfSection(NtCurrentProcess(), pBaseAddress);
    ZwClose(hSection);
    ZwClose(hFile);

    Driver->DriverUnload = UnDriver;
    return STATUS_SUCCESS;
}

运行效果如下所示,此处没有出现想要的结果是因为我们当前的VA内存地址并非实际装载地址,仅仅是PE磁盘中的地址,此处如果换成内存中的PE则可以提取出正确的结果;

9.4.3 RVA偏移转换为FOA偏移

将相对偏移地址转换为FOA文件偏移地址,此处仅仅只是多了一步pNtHeaders->OptionalHeader.ImageBase + dwRVARVA转换为VA的过程其转换结果与VA转FOA一致。

NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
    DbgPrint("hello lyshark \n");

    NTSTATUS status = STATUS_SUCCESS;
    HANDLE hFile = NULL;
    HANDLE hSection = NULL;
    PVOID pBaseAddress = NULL;
    UNICODE_STRING FileName = { 0 };

    // 初始化字符串
    RtlInitUnicodeString(&FileName, L"\\??\\C:\\Windows\\System32\\ntoskrnl.exe");

    // 内存映射文件
    status = KernelMapFile(FileName, &hFile, &hSection, &pBaseAddress);
    if (!NT_SUCCESS(status))
    {
        return 0;
    }

    // 获取PE头数据集
    PIMAGE_DOS_HEADER pDosHeader = (PIMAGE_DOS_HEADER)pBaseAddress;
    PIMAGE_NT_HEADERS pNtHeaders = (PIMAGE_NT_HEADERS)((PUCHAR)pDosHeader + pDosHeader->e_lfanew);
    PIMAGE_SECTION_HEADER pSection = IMAGE_FIRST_SECTION(pNtHeaders);
    PIMAGE_FILE_HEADER pFileHeader = &pNtHeaders->FileHeader;

    DWORD64 dwRVA = 0x89200;
    DWORD64 ImageBase = pNtHeaders->OptionalHeader.ImageBase;
    DWORD NumberOfSectinsCount = pNtHeaders->FileHeader.NumberOfSections;
    DbgPrint("镜像基址 = %p | 节表数量 = %d \n", ImageBase, NumberOfSectinsCount);

    for (DWORD each = 0; each < NumberOfSectinsCount; each++)
    {
        DWORD Section_Start = pSection[each].VirtualAddress;                                  // 计算RVA开始位置
        DWORD Section_Ends = pSection[each].VirtualAddress + pSection[each].Misc.VirtualSize; // 计算RVA结束位置

        if (dwRVA >= Section_Start && dwRVA <= Section_Ends)
        {
            DWORD VA = pNtHeaders->OptionalHeader.ImageBase + dwRVA;                                  // 得到VA地址
            DWORD FOA = pSection[each].PointerToRawData + (dwRVA - pSection[each].VirtualAddress);    // 得到FOA
            DbgPrint("RVA偏移 [ %p ] --> 对应FOA地址 [ %p ] \n", dwRVA, FOA);
        }
    }

    ZwUnmapViewOfSection(NtCurrentProcess(), pBaseAddress);
    ZwClose(hSection);
    ZwClose(hFile);

    Driver->DriverUnload = UnDriver;
    return STATUS_SUCCESS;
}

运行效果如下所示;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/179271.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

带记忆的超级GPT智能体,能做饭、煮咖啡、整理家务!

随着AI技术的快速迭代&#xff0c;Alexa、Siri、小度、天猫精灵等语音助手得到了广泛应用。但在自然语言理解和完成复杂任务方面仍然有限。 相比文本的标准格式&#xff0c;语音充满复杂性和多样性&#xff08;例如&#xff0c;地方话&#xff09;,传统方法很难适应不同用户的…

NX二次开发UF_CAM_PREPRO_mark_model_as_cam 函数介绍

文章作者&#xff1a;里海 来源网站&#xff1a;https://blog.csdn.net/WangPaiFeiXingYuan UF_CAM_PREPRO_mark_model_as_cam Defined in: uf_cam_prepro.h int UF_CAM_PREPRO_mark_model_as_cam(tag_t model ) overview 概述 This function will mark the facet model as…

c++学习之哈希

目录 1.关于unordered系列关联式容器 2.关于unordered_map 3.哈希&#xff08;散列&#xff09;表的实现 一&#xff0c;直接定址法 二&#xff0c;除留余数法 方法一&#xff1a;闭散列&#xff1a;开放定址法 方法二&#xff1a;闭散列&#xff1a;哈希桶/拉链法 4.哈希…

设计模式——RBAC 模型详解

1.什么是 RBAC 呢&#xff1f; RBAC 即基于角色的权限访问控制&#xff08;Role-Based Access Control&#xff09;。这是一种通过角色关联权限&#xff0c;角色同时又关联用户的授权方式。 简单地说&#xff1a;一个用户可以拥有若干角色&#xff0c;每一个角色又可以被分配…

maven打包可执行jar含依赖lib

修改pom.xml <build><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId><!-- jdk8可用&#xff0c;其他jdk版本可能需改插件版本 --><version>2.3.7.RE…

内存可见性与指令重排序

文章目录 内存可见性内存可见性问题代码演示JMM&#xff08;Java Memory Model&#xff09; 指令重排序指令重排序问题代码演示指令重排序分析 volatile关键字volatile 保证内存可见性 & 禁止指令重排序volatile 不保证原子性 在上一节介绍线程安全问题的过程中&#xff0c…

【计算思维】蓝桥杯STEMA 科技素养考试真题及解析 2

1、兰兰有一些数字卡片&#xff0c;从 1 到 100 的数字都有&#xff0c;她拿出几张数字卡片按照一定顺序摆放。想一想&#xff0c;第 5 张卡片应该是 A、11 B、12 C、13 D、14 答案&#xff1a;C 2、按照下图的规律&#xff0c;阴影部分应该填 A、 B、 C、 D、 答案&am…

汇编-PROC定义子过程(函数)

过程定义 过程用PROC和ENDP伪指令来声明&#xff0c; 并且必须为其分配一个名字(有效的标识符) 。目前为止&#xff0c; 我们所有编写的程序都包含了一个main过程&#xff0c; 例如&#xff1a; 当要创建的过程不是程序的启动过程时&#xff0c; 就用RET指令来结束它。RET强制…

Arthas 监听 Docker 部署的java项目CPU占比高的信息

1、Linux上安装Arthas wget https://alibaba.github.io/arthas/arthas-boot.jar2、docker ps 查看目标项目的容器ID 3、copy Arthas 到目标容器中 (注意有 &#x1f615; ) docker cp arthas-boot.jar d97e8666666:/4、进入到目标容器目录中 docker exec -it d97e8666666 /b…

FFmpeg 6.1 开放源码多媒体框架近日发布了重大更新

导读FFmpeg 6.1 开放源码多媒体框架近日发布了重大更新&#xff0c;带来了新功能、新解码器、新过滤器和许多其他变化。 在 FFmpeg 6.0 “Von Neumann “版本发布八个多月后&#xff0c;FFmpeg 6.1 被命名为 “Heaviside”&#xff0c;引入了多线程 Vulkan 硬件加速解码&#x…

【React-Router】路由快速上手

1. 创建路由开发环境 # 使用CRA创建项目 npm create-react-app react-router-pro# 安装最新的ReactRouter包 npm i react-router-dom2. 快速开始 // index.jsimport React from react; import ReactDOM from react-dom/client; import ./index.css; import App from ./App; i…

在终端输入任意的英文字符串,求最后一个单词的长度

实例要求&#xff1a;1、在终端输入任意的英文字符串 s&#xff0c;由若干单词组成&#xff0c;单词前后用一些空格字符隔开&#xff1b;2、返回字符串中 最后一个 单词的长度&#xff1b;3、单词 是指仅由字母组成、不包含任何空格字符的最大子字符串&#xff1b;示例代码&…

2023亚太杯数学建模竞赛(亚太赛)选题建议+初步分析

如下为C君的2023亚太杯数学建模竞赛&#xff08;亚太赛&#xff09;选题建议初步分析&#xff1a; 提示&#xff1a;DS C君认为的难度&#xff1a;C<A<B&#xff0c;开放度&#xff1a;A<B<C。 以下为ABC题选题建议及初步分析&#xff1a; A题&#xff1a;Image…

Day38力扣打卡

打卡记录 网格中的最小路径代价&#xff08;动态规划&#xff09; 链接 class Solution:def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:m, n len(grid), len(grid[0])f [[0x3f3f3f3f3f] * n for _ in range(m)]f[0] grid[0]for i i…

文本分析:NLP 魔法!

一、说明 这是一个关于 NLP 和分类项目的博客。NLP 是自然语言处理&#xff0c;目前需求量很大。让我们了解如何利用 NLP。我们将通过编码来理解流程和概念。我将在本博客中介绍 BagOfWords 和 n-gram 以及朴素贝叶斯分类模型。这个博客的独特之处&#xff08;这使得它很长&…

轻量封装WebGPU渲染系统示例<38>- 动态构建WGSL材质Shader(源码)

实现原理: 基于宏定义和WGSL功能文件实现 当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/rendering/src/voxgpu/sample/DynamicShaderBuilding.ts 当前示例运行效果: 此示例基于此渲染系统实现&#xff0c;当前示例TypeScript源码如下&#x…

【追求卓越04】数据结构--栈与队列

引导 今天我们开始学习栈与队列的内容&#xff0c;我觉得栈并不难&#xff0c;所以篇幅也就不会那么多了。在虚拟空间中&#xff0c;栈是用户空间中的一种数据结构&#xff0c;它主要用于保存局部变量。那么问题来了&#xff0c;为什么用栈来保存局部变量&#xff0c;不用别的数…

探秘开发app与小程序:一场技术与创新的博弈

app与小程序&#xff1a;一场技术与创新的博弈随着科技的飞速发展&#xff0c;移动应用程序已经成为我们日常生活中不可或缺的一部分。在这个充满竞争的时代&#xff0c;企业纷纷投身于开发各类移动应用&#xff0c;以期在市场中占据一席之地。然而&#xff0c;面对多样化的应用…

从0开始学习JavaScript--JavaScript迭代器

JavaScript迭代器&#xff08;Iterator&#xff09;是一种强大的编程工具&#xff0c;它提供了一种统一的方式来遍历不同数据结构中的元素。本文将深入探讨JavaScript迭代器的基本概念、用法&#xff0c;并通过丰富的示例代码展示其在实际应用中的灵活性和强大功能。 迭代器的…

Redis-Redis缓存高可用集群

1、Redis集群方案比较 哨兵模式 在redis3.0以前的版本要实现集群一般是借助哨兵sentinel工具来监控master节点的状态&#xff0c;如果master节点异常&#xff0c;则会做主从切换&#xff0c;将某一台slave作为master&#xff0c;哨兵的配置略微复杂&#xff0c;并且性能和高可…