分类预测 | Matlab实现KPCA-IDBO-LSSVM基于核主成分分析-改进蜣螂算法优化最小二乘支持向量机的分类预测

分类预测 | Matlab实现KPCA-IDBO-LSSVM基于核主成分分析-改进蜣螂算法优化最小二乘支持向量机的分类预测

目录

    • 分类预测 | Matlab实现KPCA-IDBO-LSSVM基于核主成分分析-改进蜣螂算法优化最小二乘支持向量机的分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.多特征输入,附赠DBO-LSSVM、原始LSSVM两个模型的对比。经过降维后利用改进蜣螂算法优化LSSVM参数为:sig,gamma。
2.蜣螂算法改进点如下,融合了改进的正弦算法,自适应高斯-柯西混合变异扰动和Bernoulli混沌映射,三个改进点。
3.直接替换Excel数据即可用,注释清晰,适合新手小白。
4.附赠示例数据,直接运行main一键出图。

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现KPCA-IDBO-LSSVM基于核主成分分析-改进蜣螂算法优化最小二乘支持向量机的分类预测
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test  = ind2vec(T_test );
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
dbn.sizes = [70 32 56];                 % 隐藏层节点
opts.numepochs = 100;                   % 训练次数
opts.batchsize = M;                     % 每次训练样本个数 需满足:(M / batchsize = 整数)
opts.momentum  = 0;                     % 学习率的动量
opts.alpha     = 0.01;                  % 学习率

dbn = dbnsetup(dbn, p_train, opts);     % 建立模型
dbn = dbntrain(dbn, p_train, opts);     % 训练模型
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/131174983

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/178883.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

HarmonyOS(三)—— 应用程序入口—UIAbility

前言 学习过android的同学都是知道Activity,Activity是Android组件中最基本也是最为常见用的四大组件之一,用户可以用来交互为了完成某项任务。 Activity中所有操作都与用户密切相关,是一个负责与用户交互的组件,可以通过setCon…

Nevron Vision for .NET 2023.1 Crack

Nevron Vision for .NET 适用于桌面和 Web 应用程序的高级数据可视化 Nevron Vision for .NET提供最全面的组件,用于构建面向 Web 和桌面的企业级数据可视化应用程序。 该套件中的组件具有连贯的 2D 和 3D 数据可视化效果,对观众产生巨大的视觉冲击力。我…

阅读记录【arXiv2020】 Adaptive Personalized Federated Learning

Adaptive Personalized Federated Learning 论文地址: https://arxiv.org/abs/2003.13461 摘要 对联邦学习算法个性化程度的研究表明,只有最大化全局模型的性能才会限制局部模型的个性化能力。在本文中,我们提倡自适应个性化联合学习&…

springboot前后端分离项目配置https接口(ssl证书)

文章目录 说明vue.js前端部署vue.js项目axios请求配置本地创建日志文件创建Dockerfile文件配置ssl证书nginx.confvue项目打包上传创建容器部署 后端springboot项目部署配置ssl证书打包部署 补充:jsk证书和pfx证书补充:两种证书的转化JKS转PFXPFX 转 JKS …

基于蛇优化算法优化概率神经网络PNN的分类预测 - 附代码

基于蛇优化算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于蛇优化算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于蛇优化优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神经网络…

docker报错standard init linux.go:228 exec user process caused: exec format error

1、报错 使用Dockerfile自己做的服务镜像,docker run时启动失败,报错如下: standard init linux.go:228 exec user process caused: exec format error2、原因一 当前服务器的CPU架构和构建镜像时的CPU架构不兼容。比如做镜像是在arm机器下…

图形数据库的实战应用:如何在 Neo4j 中有效管理复杂关系

关系数据库管理系统( RDBMS ) 代表了最先进的技术,这在一定程度上要归功于其由周边技术、工具和广泛的专业技能组成的完善的生态系统。 在这个涵盖信息技术(IT) 和运营技术(OT) 的技术革命时代,人们普遍认识到性能方面出现了重大挑战,特别是…

Elasticsearch:将最大内积引入 Lucene

作者:Benjamin Trent 目前,Lucene 限制 dot_product (点积) 只能在标准化向量上使用。 归一化迫使所有向量幅度等于一。 虽然在许多情况下这是可以接受的,但它可能会导致某些数据集的相关性问题。 一个典型的例子是 Cohere 构建的嵌入&#x…

CSS特效016:天窗扬起合上的效果

CSS常用示例100专栏目录 本专栏记录的是经常使用的CSS示例与技巧,主要包含CSS布局,CSS特效,CSS花边信息三部分内容。其中CSS布局主要是列出一些常用的CSS布局信息点,CSS特效主要是一些动画示例,CSS花边是描述了一些CSS…

计算3个点的6种分布在平面上的占比

假设平面的尺寸是6*6,用11的方式构造2,在用21的方式构造3 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 3 3 3 x 3 3 2 2 2 1 2 2 2 2 2 1 2 2 在平面上有一个点x,11的操作吧平面分成了3部分2a1,2a…

OCR是什么意思,有哪些好用的OCR识别软件?

1. 什么是OCR? OCR(Optical Character Recognition)是一种光学字符识别技术,它可以将印刷体文字转换为可编辑的电子文本。OCR技术通过扫描和分析图像中的文字,并将其转化为计算机可识别的文本格式,从而…

DataFunSummit:2023年OLAP引擎架构峰会-核心PPT资料下载

一、峰会简介 OLAP技术是当前大数据领域的热门方向,该领域在各个行业都有广泛的使用场景,对OLAP引擎的功能有丰富多样的需求。同时,在性能、稳定性和成本方面,也有诸多挑战。目前,OLAP技术没有形成统一的事实标准&…

使用SpringBoot集成MyBatis对管理员的查询操作

增删改查中的查询操作,对所有的普通管理员进行查询操作。 效果展示: 不仅可以在打开页面时进行对管理员的自动查询操作,还可以在输入框进行查询。 首先是前端向后端发送POST请求,后端接收到请求,如果是有参数传到后端…

Py之wikipedia-api:wikipedia-api的简介、安装、使用方法之详细攻略

Py之wikipedia-api:wikipedia-api的简介、安装、使用方法之详细攻略 目录 wikipedia-api的简介 wikipedia-api的安装 wikipedia-api的使用方法 1、 创建 Wikipedia并进行查询 wikipedia-api的简介 Wikipedia-API是一个易于使用的Python封装,用于访…

传统企业如何实现数字化转型?如何加快企业数字化转型?

科技的发展给社会带来了各种变革,技术日新月异,很多传统的东西都被大众抛之脑后,在这个以技术和数据运营为导向的数字化时代,传统企业想要保持足够的核心竞争力,就必须跟上时代的步伐,进行企业数字化转型&a…

使用PySpark 结合Apache SystemDS 进行信号处理分析 (离散傅立叶变换)的简单例子

文章大纲 简介 :什么是 SystemDS ?环境搭建与数据 准备数据预处理模型训练 与 结果评估参考文献简介 :什么是 SystemDS ? SystemDS is an open source ML system for the end-to-end data science lifecycle from data integration, cleaning, and feature engineering, ov…

语音识别入门——常用软件及python运用

工具以及使用到的库 ffmpegsoxaudacitypydubscipylibrosapyAudioAnalysisplotly 本文分为两个部分: P1:如何使用ffmpeg和sox处理音频文件 P2:如何编程处理音频文件并执行基本处理 P1 处理语音数据——命令行方式 格式转换 ffmpeg -i video…

HarmonyOS ArkTS Video组件的使用(七)

概述 在手机、平板或是智慧屏这些终端设备上,媒体功能可以算作是我们最常用的场景之一。无论是实现音频的播放、录制、采集,还是视频的播放、切换、循环,亦或是相机的预览、拍照等功能,媒体组件都是必不可少的。以视频功能为例&a…

java--飞翔的小鸟

游戏玩法:通过鼠标点击使小鸟上下移动穿过柱子并完成得分,小鸟碰到柱子或掉落到地面上都会结束游戏。 游戏内图片 Brid类: package bird;import org.omg.CORBA.IMP_LIMIT;import javax.imageio.ImageIO; import java.awt.image.BufferedIma…

时序预测 | MATLAB实现基于BiLSTM-AdaBoost双向长短期记忆网络结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于BiLSTM-AdaBoost双向长短期记忆网络结合AdaBoost时间序列预测 目录 时序预测 | MATLAB实现基于BiLSTM-AdaBoost双向长短期记忆网络结合AdaBoost时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.Matlab实现BiLSTM-Adaboost…