基于蛇优化算法优化概率神经网络PNN的分类预测 - 附代码

基于蛇优化算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于蛇优化算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于蛇优化优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用蛇优化算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于蛇优化优化的PNN网络

蛇优化算法原理请参考:https://blog.csdn.net/u011835903/article/details/124438414

利用蛇优化算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

蛇优化参数设置如下:

%% 蛇优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,蛇优化-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/178868.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

docker报错standard init linux.go:228 exec user process caused: exec format error

1、报错 使用Dockerfile自己做的服务镜像,docker run时启动失败,报错如下: standard init linux.go:228 exec user process caused: exec format error2、原因一 当前服务器的CPU架构和构建镜像时的CPU架构不兼容。比如做镜像是在arm机器下…

图形数据库的实战应用:如何在 Neo4j 中有效管理复杂关系

关系数据库管理系统( RDBMS ) 代表了最先进的技术,这在一定程度上要归功于其由周边技术、工具和广泛的专业技能组成的完善的生态系统。 在这个涵盖信息技术(IT) 和运营技术(OT) 的技术革命时代,人们普遍认识到性能方面出现了重大挑战,特别是…

Elasticsearch:将最大内积引入 Lucene

作者:Benjamin Trent 目前,Lucene 限制 dot_product (点积) 只能在标准化向量上使用。 归一化迫使所有向量幅度等于一。 虽然在许多情况下这是可以接受的,但它可能会导致某些数据集的相关性问题。 一个典型的例子是 Cohere 构建的嵌入&#x…

CSS特效016:天窗扬起合上的效果

CSS常用示例100专栏目录 本专栏记录的是经常使用的CSS示例与技巧,主要包含CSS布局,CSS特效,CSS花边信息三部分内容。其中CSS布局主要是列出一些常用的CSS布局信息点,CSS特效主要是一些动画示例,CSS花边是描述了一些CSS…

计算3个点的6种分布在平面上的占比

假设平面的尺寸是6*6,用11的方式构造2,在用21的方式构造3 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 3 3 3 x 3 3 2 2 2 1 2 2 2 2 2 1 2 2 在平面上有一个点x,11的操作吧平面分成了3部分2a1,2a…

OCR是什么意思,有哪些好用的OCR识别软件?

1. 什么是OCR? OCR(Optical Character Recognition)是一种光学字符识别技术,它可以将印刷体文字转换为可编辑的电子文本。OCR技术通过扫描和分析图像中的文字,并将其转化为计算机可识别的文本格式,从而…

DataFunSummit:2023年OLAP引擎架构峰会-核心PPT资料下载

一、峰会简介 OLAP技术是当前大数据领域的热门方向,该领域在各个行业都有广泛的使用场景,对OLAP引擎的功能有丰富多样的需求。同时,在性能、稳定性和成本方面,也有诸多挑战。目前,OLAP技术没有形成统一的事实标准&…

使用SpringBoot集成MyBatis对管理员的查询操作

增删改查中的查询操作,对所有的普通管理员进行查询操作。 效果展示: 不仅可以在打开页面时进行对管理员的自动查询操作,还可以在输入框进行查询。 首先是前端向后端发送POST请求,后端接收到请求,如果是有参数传到后端…

Py之wikipedia-api:wikipedia-api的简介、安装、使用方法之详细攻略

Py之wikipedia-api:wikipedia-api的简介、安装、使用方法之详细攻略 目录 wikipedia-api的简介 wikipedia-api的安装 wikipedia-api的使用方法 1、 创建 Wikipedia并进行查询 wikipedia-api的简介 Wikipedia-API是一个易于使用的Python封装,用于访…

传统企业如何实现数字化转型?如何加快企业数字化转型?

科技的发展给社会带来了各种变革,技术日新月异,很多传统的东西都被大众抛之脑后,在这个以技术和数据运营为导向的数字化时代,传统企业想要保持足够的核心竞争力,就必须跟上时代的步伐,进行企业数字化转型&a…

使用PySpark 结合Apache SystemDS 进行信号处理分析 (离散傅立叶变换)的简单例子

文章大纲 简介 :什么是 SystemDS ?环境搭建与数据 准备数据预处理模型训练 与 结果评估参考文献简介 :什么是 SystemDS ? SystemDS is an open source ML system for the end-to-end data science lifecycle from data integration, cleaning, and feature engineering, ov…

语音识别入门——常用软件及python运用

工具以及使用到的库 ffmpegsoxaudacitypydubscipylibrosapyAudioAnalysisplotly 本文分为两个部分: P1:如何使用ffmpeg和sox处理音频文件 P2:如何编程处理音频文件并执行基本处理 P1 处理语音数据——命令行方式 格式转换 ffmpeg -i video…

HarmonyOS ArkTS Video组件的使用(七)

概述 在手机、平板或是智慧屏这些终端设备上,媒体功能可以算作是我们最常用的场景之一。无论是实现音频的播放、录制、采集,还是视频的播放、切换、循环,亦或是相机的预览、拍照等功能,媒体组件都是必不可少的。以视频功能为例&a…

java--飞翔的小鸟

游戏玩法:通过鼠标点击使小鸟上下移动穿过柱子并完成得分,小鸟碰到柱子或掉落到地面上都会结束游戏。 游戏内图片 Brid类: package bird;import org.omg.CORBA.IMP_LIMIT;import javax.imageio.ImageIO; import java.awt.image.BufferedIma…

时序预测 | MATLAB实现基于BiLSTM-AdaBoost双向长短期记忆网络结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于BiLSTM-AdaBoost双向长短期记忆网络结合AdaBoost时间序列预测 目录 时序预测 | MATLAB实现基于BiLSTM-AdaBoost双向长短期记忆网络结合AdaBoost时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.Matlab实现BiLSTM-Adaboost…

【用unity实现100个游戏之16】Unity中程序化生成的2D地牢5(附项目源码,完结)

文章目录 最终效果前言生成墙壁优化方法一、使用rule tile方法二、使用代码生成墙壁补充最终效果后续参考源码完结最终效果 前言 本期是本项目最后一期,主要是进行墙壁的生成优化和补充一下剩下了的其他内容 生成墙壁优化 方法一、使用rule tile 我这里大概给个rule tile参…

前缀和——DP35 【模板】二维前缀和

文章目录 🍎1. 题目🍒2. 算法原理🍅3. 代码实现 🍎1. 题目 题目链接:【模板】二维前缀和_牛客题霸_牛客网 (nowcoder.com) 描述 给你一个 n 行 m 列的矩阵 A ,下标从1开始。 接下来有 q 次查询&#xff0…

Can‘t open the append-only file: Permission denied

redis rdb aof-CSDN博客 Cant open the append-only file: Permission denied E:\Document_Redis_Windows\redis-2.4.5-win32-win64\64bit E:\Document_Redis_Windows\redis-2.4.5-win32-win64\64bit\redis.conf 还是不行,就要修改权限了,windows【完全控…

Nginx配置文件中的关键字是什么?详细解释来了

点击上方蓝字关注我 Nginx 是一款高性能的 Web 服务器软件,同时也是一款反向代理服务器软件。Nginx 的配置文件通常是 /etc/nginx/nginx.conf,以下是一个典型的配置文件,并对其中的关键字进行详细解释。 1. 配置文件 perlCopy codeuser ngin…

【论文阅读笔记】Emu Edit: Precise Image Editing via Recognition and Generation Tasks

【论文阅读笔记】Emu Edit: Precise Image Editing via Recognition and Generation Tasks 论文阅读笔记论文信息摘要背景方法结果额外 关键发现作者动机相关工作1. 使用输入和编辑图像的对齐和详细描述来执行特定的编辑2. 另一类图像编辑模型采用输入掩码作为附加输入 。3. 为…