Jina AI 的 8K 向量模型上线 AWS Marketplace,支持本地部署!

a618e97cb0f02b364f87992b06b5e5b1.png

在当前多模态 AI 和大模型技术风头正劲的背景下,Jina AI 始终领跑于创新前沿,技术领先。2023 年 10 月 30 日,Jina AI 隆重推出 jina-embeddings-v2,这是全球首款支持 8192 输入长度的开源向量大模型,其性能媲美 OpenAI 的闭源 text-embedding-ada002。如今,jina-embeddings-v2 正式登陆 AWS Marketplace,为中大型企业提供了私有化部署向量模型的理想解决方案。

作为亚马逊云科技创业加速器的一员,Jina AI 与 AWS 的密切合作体现了双方在推动 AI 技术发展上的共同承诺。这次合作不仅在技术层面上实现了联合,更是对未来大模型应用落地的深入探索。

Jina AI 的创始人兼 CEO 肖涵博士,对此表示:“jina-embeddings-v2 上线 AWS Marketplace,是对私有化 AI 解决方案行业标准的一次重大推进。”

e177642d79fa9570bc19629a1769e237.png 现在,企业用户可以在 AWS Marketplace 上搜索 jina-embeddings-v2-base/small,并将它们直接部署到自己的 AWS 账户中。

AWS SageMaker 的无缝集成

在 Jina AI,我们不仅追求技术创新,更重视其在 实际应用中的高效实施。因此我们将 jina-embeddings-v2 与 AWS SageMaker 进行了无缝集成,为企业用户提供了一种高效便捷的解决方案。企业用户现在可以轻松地将 jina-embeddings-v2 模型直接部署为 SageMaker 终端节点,迅速应用到实际业务中,无需担忧技术复杂性和部署挑战。

在商业应用方面,我们特别注重 经济性和隐私保护。我们的英语 Base 模型和 Small 模型无需额外许可费,客户仅需承担 AWS 实例相关费用。这不仅确保了在 Virtual Private Cloud(VPC)内的数据隐私和安全,同时也提供了成本效益极高的解决方案。

此外,我们为不同业务场景提供多元化的选择。0.27 GB 的 Base 模型和 0.07 GB 的 Small 模型,能够服务从深度数据分析到轻量级应用的多样化需求。其中,Base 模型以其全面的语义表示能力,非常适合企业级搜索和内容推荐。而专门针对移动和边缘设备优化的 Small 模型,则突出了在速度和效率上的优势。

jina-embeddings-v2 的独特优势

  1. RAG 应用的理想选择:我们深知长文本处理的复杂性,特别是在需要广泛信息搜集和深度理解的场景中。jina-embeddings-v2 支持不同语义粒度的完整文本表示,使其成为优化 RAG 应用中处理长篇文本的理想选择。它不仅增强了文本的语义理解能力,还提供了更大的灵活性和准确性。

  2. 全球首个支持 8k 输入长度的开源模型:jina-embeddings-v2 作为全球首个支持高达 8k 输入长度的开源模型,它在多方面比肩 OpenAI 的闭源模型 text-embedding-ada-002。我们的开源模型不仅具有强大的性能,更重要的是,它为用户提供了根据自己的业务需求进行个性化调整的自由度。

  3. 更小的维度实现高效的表征:在保持与 OpenAI 的 text-embedding-ada-002 模型相当的性能表现的同时,jina-embeddings-v2 的向量维度仅为其一半,大幅降低了存储需求并提高了检索速度。

开始使用 AWS 上的 jina-embeddings-v2

要开始使用 jina-embeddings-v2,请访问 AWS Marketplace 列表并选择最适合您需求的模型。

🔗:https://aws.amazon.com/marketplace/seller-profile?id=seller-stch2ludm6vgy

以下示例可帮助您开始使用 jina-embeddings-v2 模型:

  1. Sagemaker 的实时推理:https://github.com/jina-ai/jina-sagemaker/blob/main/notebooks/Real-time%20inference.ipynb

  2. 使用 SageMaker 批量向量化:https://github.com/jina-ai/jina-sagemaker/blob/main/notebooks/Batch%20transform.ipynb

即将推出多语言向量模型

Jina AI 正在积极开发多语言向量模型,包括中英双语、德英双语的向量模型。供企业客户在各种云服务提供商(CSP)上进行私有化部署,为全球客户提供更加全面和灵活的 AI 解决方案。随着这些模型的推出,不仅将跨越语言障碍,更将为企业解锁全球机遇。

4ab6220a4510690d71a191a094255959.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/178584.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何将设置为静态IP的VMware虚拟机进行克隆以便可以复刻相应的环境

一定要关闭需要克隆的虚拟机右键要选择克隆的虚拟机,选择管理->克隆,进入克隆虚拟机向导 设定克隆出来的虚拟机名称以及位置,选择完成 克隆完成之后将会生成虚拟机,示例中生成的虚拟机为ubuntu-dev2 因为原本的虚拟机为静态ip的…

Pytorch中的tensor维度理解

Pytorch中的tensor维度理解 文章目录 Pytorch中的tensor维度理解摘要打消心理恐惧,从三维学起三维tensor参考文献 摘要 面对pytorch编程中的tensor时,我不时会感到恐惧。对里面数据是怎么排布的,一直没有一个直观的理解。今天我想把这个事情…

微软离Altman越近,离OpenAI就越远!

大数据产业创新服务媒体 ——聚焦数据 改变商业 在OpenAI这场连续剧中(之所以说是连续剧,这个事情肯定没完,后面肯定还会出续集),让我倍感意外的是,Altman刚跟OpenAI分手,“离婚手续”都还没办…

模拟量采集----测量输入的电流

生活中的模拟量有很多 大多都为电压信号和电流信号 今天讲如何测量输入的电流信号 通过欧姆定律可知 电流测量的测量:是将电流加载在固定阻值的电阻上,来测量这个电阻二端的电压 最后反算出电流的大小 所用的公式是IU/R 我们使用仿真软件来看测量…

连接k8s和凌鲨

通过连接k8s和凌鲨,可以让研发过程中的重用操作更加方便。 更新容器镜像调整部署规模查看日志运行命令 架构 所有操作通过k8s proxy连接,通过设置namespace label赋予访问权限。只有赋予特定label的namespace才能被访问。 使用步骤 部署k8s proxy 你…

深度学习图像修复算法 - opencv python 机器视觉 计算机竞赛

文章目录 0 前言2 什么是图像内容填充修复3 原理分析3.1 第一步:将图像理解为一个概率分布的样本3.2 补全图像 3.3 快速生成假图像3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构3.5 使用G(z)生成伪图像 4 在Tensorflow上构建DCGANs最后 0 前言 &#…

基于SSM的旅游管理系统设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:采用JSP技术开发 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目&#x…

如何用java的虚拟线程连接数据库

我觉得这个很简单 首先确保你idea支持jdk21. 然后把idea编译成的目标字节码设置为21版本的 然后编写代码。 创建虚拟线程的方式有: Runnable runnable () -> {System.out.println("Hello, world!"); };// 创建虚拟线程 Thread virtualThread Thre…

likeshop单商户商城系统 任意文件上传漏洞复现

0x01 产品简介 likeshop单商户标准商城系统适用于B2C、单商户、自营商城场景。完美契合私域流量变现闭环交易使用。 系统拥有丰富的营销玩法,强大的分销能力,支持电子面单和小程序直播等功能。无论运营还是二开都是性价比极高的100%开源商城系统。 0x02…

【OpenCV实现图像:使用OpenCV生成拼图效果】

文章目录 概要通用配置不考虑间隔代码实现考虑间隔代码实现小结 概要 概要: 拼图效果是一种将图像切割为相邻正方形并重新排列的艺术效果。在生成拼图效果时,可以考虑不同的模式,包括是否考虑间隔和如何处理不能整除的部分。 不考虑间隔&a…

java代码调用twitter-api用例实战

一、申请twitter开发者账号 首先先申请twitter开发者免费的API,要填写申请的内容,放心大胆地写,申请完,会提供免费的API接口。 以下是我申请到的三个免费API 申请完开始进行测试调用。 读官方文档账户认证那块:https…

Python 2.7 在 Debian 服务器上获取 URL 时的 SSL 验证失败问题与解决方案

在使用Python的requests库从Debian稳定服务器上获取简单URL时,遇到了SSL证书错误。 根据用户的问题描述,您遇到了SSL证书验证失败的问题。 要解决这个问题,您可以采取以下步骤: 1. 升级到Python 2.7的最新版本: 首…

基于SSM的课程资源管理系统

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:采用JSP技术开发 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目&#x…

5-6求1-20的阶乘和

#include<stdio.h> //求阶乘 int main(){int n;double sum0;//求和&#xff1a;一点一点加int t1;for (n1;n<15;n){tt*n;sumsumt;}printf("结果是&#xff1a;%22.15e \n",sum);return 0; }为啥最后是%22.15e呢&#xff1f; 因为这个求和的结果太大了 所以转…

git clone慢的解决办法

在网站 https://www.ipaddress.com/ 分别搜索&#xff1a; github.global.ssl.fastly.net github.com 得到ip&#xff1a; 打开hosts文件 sudo vim /etc/hosts 在hosts文件末尾添加 140.82.114.3 github.com 151.101.1.194 github.global-ssl.fastly.net 151.101.65.194 g…

图神经网络与图注意力网络

随着计算机行业和互联网时代的不断发展与进步&#xff0c;图神经网络已经成为人工智能和大数据的重要研究领域。图神经网络是对相邻节点间信息的传播和聚合的重要技术&#xff0c;可以有效地将深度学习的理念应用于非欧几里德空间的数据上。本期推送围绕图神经网络与图注意力网…

java基础-集合

1、集合 在java中&#xff0c;集合&#xff08;Collection&#xff09;指的是一组数据容器&#xff0c;它可以存储多个对象&#xff0c;并且允许用户通过一些方法来访问与操作这些对象。j 集合的实现原理都基于数据结构和算法&#xff0c;如下&#xff1a; 数据结构&#xff1…

52.seata分布式事务

目录 1.事务的四大特性。 2.分布式服务的事务问题。 3.seata。 3.1理论基础。 3.1.1CAP定理。 3.1.2BASE理论。 3.2初识Seata。 3.2.1Seata的架构。 3.2.2部署TC服务。 3.2.3微服务集成Seata。 3.3 seata提供的四种分布式事务解决方案。 3.3.1 XA模式。 3.3.1.1 X…

摩尔定律,梅特卡夫定律,吉尔德定律

信息系统的三大定律(摩尔定律&#xff0c;梅特卡夫定律&#xff0c;吉尔德定律)有一个清晰的视角&#xff1a; 信息系统不是左边的生产消费系统&#xff0c;而是右边的交易系统&#xff0c;交易系统与生产消费典型的区别在于信息交易过程会产生新的信息&#xff0c;就像钱一样…

jvs-智能bi(自助式数据分析)11.21更新功能上线

jvs智能bi更新功能 新增: 1.字段设置节点新增自定义时间格式功能&#xff1b; 自定义功能允许用户根据需要自定义日期和时间字段的显示格式&#xff0c;为用户提供了更大的灵活性和便利性 2.图表时间搜索条件新增向下兼容模式&#xff1b; 时间搜索条件的向下兼容模式允许用…