人工智能的几个研究方向

人工智能主要研究内容是:分布式人工智能与多智能主体系统、人工思维模型、知识系统、知识发现与数据挖掘、遗传与演化计算、人工生命、人工智能应用等等。

其中热门研究有以下几种。

一、计算机视觉

就包括图像识别,视频识别,具体应用有人脸识别,步态识别,无人驾驶汽车等等。(计算机视觉——是指用摄影机和计算机代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图像处理,用计算机处理成为更适合人眼观察或传送给仪器检测的图像。

二、自然语言处理

包括机器翻译,语音识别,文本挖掘等等,像siri,谷歌翻译里面都有很多的自然语言处理技术。(自然语言处理(NLP)——是指用计算机对自然语言的形、音、义等信息进行处理,即对字、词、句、篇章的输入、输出、识别、分析、理解、生成等的操作和加工。

三、数据挖掘

主要是各种推荐和预测,包括电子商务的商品推荐,计算广告,社交网络分析(微博好友推荐等),预测一些趋势,比如股市的走向,天气的变化等。(一个跨学科的计算机科学分支。它是用人工智能、机器学习、统计学和数据库的交叉方法在相对较大型的数据集中发现模式的计算过程。

四、机器学习(ML)

是计算机系统为了有效地执行特定任务,不使用明确的指令,而依赖模式和推理使用的算法和统计模型的科学研究。它被视为人工智能的一个子集。机器学习算法构建一个基于样本数据的数学模型,称为“训练数据”,以便在没有明确编程来执行任务的情况下进行预测或决策。
 

但是AI学习不仅仅在于模型掌握了多少,更多的在于你的算法分析和设计能力、工程实践能力、算法模型的优化能力,很重要的一句话,当你掌握了基本的技术理论,就要开始多实践,不断验证自己的理论,更新自己的技术。

五、自学学习路线参考

入门 Python基础→ Python数据挖掘

中级 机器学习

进阶 NLP自然语言

高级 OpenCV基础深度学习

零基础入门:

Python小白基础入门教程 Python入门到精通教程
零基础必备:全套Python教程_Python基础入门视频教程,零基础小白自学Python入门教程

python基础进阶:Python深入浅出进阶教程【敢信?】收藏=点赞十倍
Python实战Djongo项目:python企业级开发项目-手把手从0到1开发《美多商城》
mysql数据库:MySQL全套教程,MySQL从基础到黑马订单案例实战
机器学习算法:3天快速入门python机器学习
聚类算法:360°解读机器学习经典算法——聚类算法
数据挖掘:Python教程,4天快速入门Python数据挖掘,系统精讲+实战案例
Web服务器:Python高级语法进阶教程_python多任务及网络编程,从零搭建网站全套教程
180分钟爬虫入门:180分钟轻松获取疫情数据,Python爬虫入门课
Scrapy框架:Python爬虫基础,快速入门Scrapy爬虫框架
多线程:python多线程编程

人工智能入门:智能机器人软件开发教程基础,从helloworld到神经网络
人工智能深度学习:智能机器人软件开发教程基础,从helloworld到神经网络
图像与视觉处理:人工智能教程|零基础学习计算机视觉快速入门

六、人工智能超级实用的4本书

01 机器学习

  • 作 者:周志华
  • 索书号:TP181

推荐理由:

机器学习是计算机科学与人工智能的重要分支领域。本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面。为了使尽可能多的读者通过本书对机器学习有所了解,作者试图尽可能少地使用数学知识。然而,少量的概率、统计、代数、优化、逻辑知识似乎不可避免。因此,本书更适合大学三年级以上的理工科本科生和研究生,以及具有类似背景的对机器学习感兴趣的人士。为方便读者,本书附录给出了一些相关数学基础知识简介。全书共16章,大致分为3个部分:第1部分(第1~3章)介绍机器学习的基础知识;第2部分(第4~10章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器

、集成学习、聚类、降维与度量学习);第3部分(第11~16章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等。前3章之外的后续各章均相对独立,读者可根据自己的兴趣和时间情况选择使用。根据课时情况,一个学期的本科生课程可考虑讲授前9章或前10章;研究生课程则不妨使用全书。书中除第1章外,每章都给出了十道习题。有的习题是帮助读者巩固本章学习,有的是为了引导读者扩展相关知识。一学期的一般课程可使用这些习题,再辅以两到三个针对具体数据集的大作业。带星号的习题则有相当难度,有些并无现成答案,谨供富有进取心的读者启发思考。

02 图解机器学习

  • 作 者:杉山将
  • 索书号:TP181

推荐理由:

本书用丰富的图示,从最小二乘法出发,对基于最小二乘法实现的各种机器学习算法进行了详细的介绍。第Ⅰ部分介绍了机器学习领域的概况;第Ⅱ部分和第Ⅲ部分分别介绍了各种有监督的回归算法和分类算法;第Ⅳ部分介绍了各种无监督学习算法;第Ⅴ部分介绍了机器学习领域中的新兴算法。书中大部分算法都有相应的MATLAB程序源代码,可以用来进行简单的测试。

03 机器学习:原理、算法、与应用

  • 作 者:雷明
  • 索书号:TP181

推荐理由:

本书是机器学习和深度学习领域的入门与提高教材,紧密结合工程实践与应用,系统、深入地讲述机器学习与深度学习的主流方法与理论。全书由23章组成,共分为三大部分。第1~3章为第一部分,介绍机器学习的基本原理、所需的数学知识(包括微积分、线性代数、最优化方法和概率论),以及机器学习中的核心概念。第4~22章为第二部分,是本书的主体,介绍各种常用的有监督学习算法、无监督学习算法、半监督学习算法和强化学习算法。对于每种算法,从原理与推导、工程实现和应用3个方面进行介绍,对于大多数算法,都配有实验程序。第23章为第三部分,介绍机器学习和深度学习算法实际应用时面临的问题,并给出典型的解决方案。本书理论推导与证明详细、深入,结构清晰,详细地讲述主要算法的原理与细节,让读者不仅知其然,还知其所以然,真正理解算法、学会使用算法。对于计算机、人工智能及相关专业的本科生和研究生,这是一本适合入门与系统学习的教材。

04 神经网络与机器学习

  • 作 者:海金
  • 索书号:TP18

推荐理由:

神经网络是计算智能和机器学习的重要分支,在诸多领域都取得了很大的成功。在众多神经网络著作中,影响最为广泛的是Simon Haykin的《神经网络原理》(第3版更名为《神经网络与机器学习》)。在本书中,作者结合近年来神经网络和机器学习的最新进展,从理论和实际应用出发,全面、系统地介绍了神经网络的基本模型、方法和技术,并将神经网络和机器学习有机地结合在一起。本书不但注重对数学分析方法和理论的探讨,而且也非常关注神经网络在模式识别

、信号处理以及控制系统等实际工程问题的应用。本书的可读性非常强,作者举重若轻地对神经网络的基本模型和主要学习理论进行了深入探讨和分析,通过大量的试验报告、例题和习题来帮助读者更好地学习神经网络。

七、AI和深度学习的大佬博客整理出10个大家感兴趣可收藏

1.OpenAI

OpenAI 是一个非营利性人工智能研究公司,它的宗旨是推动和发展安全友好的人工智能。Sam Altman, Elon Musk 和其他几个著名的投资者负责给这家公司提供资金。OpenAI 的博客也是被全世界所有的人工智能和深度学习爱好者关注着。OpenAI 会定期发表他们在先进的人工智能技术方面的研究成果,包括自然语言处理、图像处理和语音处理。 链接:blog.openai.com/

2.Distill

Distill 致力于清晰地解释机器学习。编辑和策展团队由来自 Google Brain,DeepMind,Tesla 和其他着名组织的科学家组成。Distill 的愿景是通过简单和视觉上令人愉悦的语言来解释机器学习的论文和模型。Distill Journal 是 Distill 提供的一个出版期刊,它是鼓励研究人员采用超越传统学术形式的方法来更好沟通科学,以及为读者服务。 链接:distill.pub/

3.BAIR Blog

这个博客是由加州大学伯克利分校的伯克利 AI 研究(BAIR)小组设立。它的目的是传播 BAIR 小组在人工智能研究方面的发现、观点和更新成果。这个博客的编辑团队包括来自 BAIR 小组的学生、博士后和教师。他们通常每周会发表一篇文章,内容是 BAIR 在深度学习、机器学习和人工智能领域方面的研究。 链接:bair.berkeley.edu/blog/

4.DeepMind Blog

DeepMind 是在 2010 年由 Dennis Hassabis, Mustafa Suleyman 和 Shane Legg 三个人所创立。DeepMind 的博客主要包括对他们的研究论文、思想领导力以及围绕人工智能的远见卓识的讨论。由于 DeepMind 团队的人工智能模拟研究,他们的博客受到了很多人工智能研究者的高度重视。此外,DeepMind 还是 2014 年被谷歌收购的 Alphabet 小组的一部分。 链接:deepmind.com/blog/?categ…

5.Andrej Karpathy’s Blog

Andrej Karpathy 现任特斯拉的人工智能总监,之前曾在 OpenAI 工作过。他在斯坦福大学取得博士学位。他的博客在人工智能社区非常有名,特别是当他在读取博士学位和在 OpenAI 工作时候发表的文章。他写了大量有关计算机视觉以及其他人工智能领域的文章。 链接:

  • karpathy.github.io/
  • medium.com/@karpathy/

6.Colah’s Blog

Christopher Olah 是在谷歌大脑工作的研究科学家。同时也是 Distill 的一个编辑者之一,还有 Shan Carter 也是。他主要发表的是对于机器学习和深度学习领域的理解神经网络方面的文章。他的目标是用简单的语言解释神经网络的复杂功能。如果你是刚入门神经网络,那么他的博客正好适合作为你的入门教程。 链接:colah.github.io/

7.WildML

这是 Denny Britz 的博客。Britz 曾是谷歌大脑团队的一个成员。他写作的主要方向是深度学习,发表有关利用 TensorFlow 来理解、应用和实现神经网络的文章。他还有另外一个博客,主要是写有关初创公司和软件工程方面的文章。 链接:

  • www.wildml.com/
  • blog.dennybritz.com/

8.Ruder’s Blog

Sebastian Ruder 目前正在攻读博士学位,同时也是一家文本分析初创公司--Aylien 的研究科学家。他的文章大多数是关于深度学习和自然语言处理,主要是集中在多任务学习和迁移学习方面。Ruder 通过视觉上以及易懂语言来给出他对公式的理解和解释。他的博客对于新手非常易于理解,也是一个开始学习深度学习知识的很好的教程。 链接:ruder.io/

9.FAIR Blog

这是属于 Facebook 的人工智能研究博客,主要讨论人工智能、深度学习、机器学习、计算机视觉以及他们现实世界的自身的产品应用。FAIR 小组发表了很多研究论文,这个博客也可以作为创作和提升的媒体。 链接:research.fb.com/blog/

10.inFERENCe

这是 Ferenc Huszár 的博客。他是一个来自剑桥大学的博士,目前工作于 Twitter Cortex。他主要是研究概率推理、生成模型、无监督学习以及应用深度学习到上述问题,并发表这些主题相关的文章。 链接:www.inference.vc/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/1776.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python 基础教程【3】:字符串、列表、元组

本文已收录于专栏🌻《Python 基础》文章目录🌕1、字符串🥝1.1 字符串基本操作🍊1.1.1 字符串创建🍊1.1.2 字符串元素读取🍊1.1.3 字符串分片🍊1.1.4 连接和重复🍊1.1.5 关系运算&…

Java序列化与反序列化

优秀博文:IT-BLOG-CN 序列化:把对象转换为字节序列存储于磁盘或者进行网络传输的过程称为对象的序列化。 反序列化:把磁盘或网络节点上的字节序列恢复到对象的过程称为对象的反序列化。 一、序列化对象 【1】必须实现序列化接口Serializabl…

RK3568平台开发系列讲解(驱动基础篇)I2C协议介绍

🚀返回专栏总目录 文章目录 一、I2C基本读写过程二、通讯的起始和停止信号三、数据有效性四、地址及数据方向五、响应沉淀、分享、成长,让自己和他人都能有所收获!😄 📢I2C的协议定义了通讯的起始和停止信号、数据有效性、响应、仲裁、时钟同步和地址广播等环节。 一、…

《网络安全入门到精通》 - 2.1 - Windows基础 - DOS命令Windows防火墙Windows共享文件

「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「订阅专栏」:此文章已录入专栏《网络安全入门到精通》 Windows基础一、DOS命令1、目录文件操作dir 列出目录文件cd 切换目录md 创建目录rd 删除目录move 移动文件或目…

4.网络爬虫—Post请求(实战演示)

网络爬虫—Post请求实战演示POST请求GET请求POST请求和GET请求的区别获取二进制数据爬[百度官网](https://www.baidu.com/)logo实战发送post请求百度翻译实战使用session发送请求模拟登录17k小说网常见问题前言: 📝​📝​此专栏文章是专门针对…

数据结构笔记

文章目录第一章:数据结构与算法第二章:稀疏数组和队列一 、稀疏sparsearray 数组(一)案例需求(二)稀疏数组介绍(三)应用实列(四)代码实现二、队列&#xff08…

动态规划算法

一、前言动态规划是一种常用的算法,在算法领域十分重要,但对于新手来说,理解起来有一定的挑战性,这篇博客将明确步骤来一步一步讲解动态规划到底该如何理解与运用。二、解析动态规划算法1.特点①把原来的问题分解成了【要点相同】…

【Linux】软件包管理器 yum

什么是软件包和软件包管理器 在 Linux 下需要安装软件时, 最原始的办法就是下载到程序的源代码, 进行编译得到可执行程序。但是这样太麻烦了,所以有些人就把一些常用的软件提前编译好, 做成软件包 ( 就相当于windows上的软件安装程序)放在服…

Spring框架中IOC和DI详解

Spring框架学习一—IOC和DI 来源黑马Spring课程,觉得挺好的 目录 文章目录Spring框架学习一---IOC和DI目录学习目标第一章 Spring概述1、为什么要学习spring?2、Spring概述【了解】【1】Spring是什么【2】Spring发展历程【3】Spring优势【4】Spring体系…

java线程之Thread类的基本用法

Thread类的基本用法1. Thread类的构造方法2. Thread的几个常见属性常见属性线程中断等待一个线程小鱼在上一篇博客详细的讲解了如何创建线程,java使用Thread类来创建多线程,但是对于好多没有相关经验的人来说,比较不容易理解的地方在于操作系统调度的执行过程. 我们通过下面代码…

Tomcat部署及优化

目录 1.Tomcat概述 1.Tomcat的概念 2、Tomcat的核心组件 3.Java Servlet 的概念 4.JSP的概念 5.Tomcat中最顶层的容器------server 6.四个子容器的作用 7.Tomcat请求过程 2.Tomcat服务部署 1.Tomcat服务部署的步骤 2.实例操作:Tomcat服务部署 3.Tomcat 虚拟主机配置…

数据清洗是清洗什么?

在搭建数据中台、数据仓库或者做数据分析之前,首要的工作重点就是做数据清洗,否则会影响到后续对数据的分析利用。那么数据清洗到底是做什么事情呢?今天我就来跟大家分享一下。 数据清洗的基本概念 按百度百科给出的解释,“数据清…

Java之链表(不带头结点,带头结点,迭代实现,递归实现)

目录 一.链表 1.什么是链表 2.链表的分类 二.不带头结点单向链表的非递归实现 1.接口的定义 2. 不带头结点单向链表的结构 3.链表的添加操作(头插法和尾插法) 1.头插法 2.尾插法 4. 链表的插入操作 5.链表的删除操作 1.删除指定索引的结点 2.删除指定值的第一个结点…

一文带你领略 WPA3-SAE 的 “安全感”

引入 WPA3-SAE也是针对四次握手的协议。 四次握手是 AP (authenticator) 和 (supplicant)进行四次信息交互,生成一个用于加密无线数据的秘钥。 这个过程发生在 WIFI 连接 的 过程。 为了更好的阐述 WPA3-SAE 的作用 …

Thread的小补丁

Thread小补丁线程状态NewRunnableWaitingTimed_waitingBlocked线程安全线程的抢占式执行同时对同一个变量进行修改指令重排序操作不是原子的解决方案万恶之源优化我们自己的代码Synchronized和Volatile上一篇博客中,我们简单介绍了线程Thread的一些知识,一些基本的使用,但是单单…

数据结构和算法(1):数组

目录概述动态数组二维数组局部性原理越界检查概述 定义 在计算机科学中,数组是由一组元素(值或变量)组成的数据结构,每个元素有至少一个索引或键来标识 In computer science, an array is a data structure consisting of a col…

文心一言发布,你怎么看?chatGPT

百度全新一代知识增强大语言模型“文心一言”于2021年3月16日正式发布,作为一款自然语言处理技术,它引起了广泛的关注和讨论。 首先,文心一言是一款具有重大意义的自然语言处理技术。在人工智能领域,自然语言处理技术一直是一个难…

PyTorch 之 神经网络 Mnist 分类任务

文章目录一、Mnist 分类任务简介二、Mnist 数据集的读取三、 Mnist 分类任务实现1. 标签和简单网络架构2. 具体代码实现四、使用 TensorDataset 和 DataLoader 简化本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052 一、Mnist 分类任…

Lambda表达式

第一章 Java为什么引入 Lmabda表达式目的尽可能轻量级的将代码封装为数据1.1 什么是Lambda表达式Lambda表达式也被成为箭头函数、匿名函数、闭包 Lambda表达式体现的是轻量级函数式编程思想 ‘->’符号是Lambda表达式的核心符号,符号左侧是操作参数,符…

YOLOv8 多目标跟踪

文章大纲 简介环境搭建代码样例跟踪原理代码分析原始老版实现新版本封装代码实现追踪与计数奇奇怪怪错误汇总lap 安装过程报错推理过程报错参考文献与学习路径简介 使用yolov8 做多目标跟踪 文档地址: https://docs.ultralytics.com/modes/track/https://github.com/ultralyt…