二、PEMFC基础之电化学与反应动力学

二、PEMFC基础之电化学与反应动力学

    • 1.电流、电流密度
    • 2.反应速率常数
    • 3.交换电流密度
    • 4.电化学动力学奠基石B-V方程
    • 5.活化损失计算Tafel公式
    • 6.计算案例

1.电流、电流密度

由法拉第定律
i = d Q d t = n F d N d t i=\frac{dQ}{dt}=\frac{nFdN}{dt} i=dtdQ=dtnFdN j = i A j=\frac{i}{A} j=Ai
单位面积反应速率(mol·s-1·cm-2):
υ = 1 A d N d t = i n F A = j n F \upsilon=\frac{1}{A}\frac{dN}{dt}=\frac{i}{nFA}=\frac{j}{nF} υ=A1dtdN=nFAi=nFj

2.反应速率常数

反应速率常数k(s-1)由过渡态理论获取:
k = k B T h e x p ( − △ G R T ) k=\frac{k_{B}T}{h}exp\left ( \frac{-\bigtriangleup G}{RT} \right ) k=hkBTexp(RTG)
其中,吉布斯自由能∆G可以分为化学能项(下标ac)和电能项两部分。
△ G = △ G a c + α R d F E r \bigtriangleup G=\bigtriangleup G_{ac}+\alpha _{Rd}FE_{r} G=Gac+αRdFEr △ G = △ G a c − α O x F E r \bigtriangleup G=\bigtriangleup G_{ac}-\alpha _{Ox}FE_{r} G=GacαOxFEr
注意:
a.α为转移系数,部分文献将对称因子β与α混淆使用,严格意义上来说是不对的,区别在于:
对称因子β严格用于涉及单个电子的单步反应,且阴阳极对称因子之和为1;
转移系数α描述多步过程,阴阳极的转移因子和不一定为1
b.阳极的传输系数一般取0.5,阴极在0.1~0.5之间比较合适。

3.交换电流密度

正向(下标f)和逆向(下标b)反应的单位面积反应速率又可以表示为:
υ f = k f C O x \upsilon_{f}=k_{f}C_{Ox} υf=kfCOx υ b = k b C R d \upsilon_{b}=k_{b}C_{Rd} υb=kbCRd
正向电流密度和逆向电流密度分别为:
j f = n F k 0 , f C O x e x p [ − α R d F E r R T ] j_{f}=nFk_{0,f}C_{Ox}exp\left [ -\frac{\alpha _{RdFE_{r}}}{RT} \right ] jf=nFk0,fCOxexp[RTαRdFEr]
j b = n F k 0 , b C R d e x p [ − α O x F E r R T ] j_{b}=nFk_{0,b}C_{Rd}exp\left [ -\frac{\alpha _{OxFE_{r}}}{RT} \right ] jb=nFk0,bCRdexp[RTαOxFEr]
当jf=jb时,即没有净电流输出时,此时电流密度为交换电流密度,jf=jb=j0
注意:
a.交换电流密度越大,活化过电势越小,净电流密度越大,总之该项越大电池性能越好。
b.阳极交换电流密度比阴极交换电流密度高几个量级。
c.有效交换电流密度与交换电流密度的区别:
交换电流密度代表电化学反应的内在动力学,由电极材料的性质、电化学反应和电极表面的反应物浓度决定;
有效交换电流密度不仅考虑了电化学反应的内在动力学,而且还考虑了燃料电池电极结构的影响,如催化剂层的孔隙率、催化剂负载和催化剂表面积的利用。在计算燃料电池的活化损失时,通常使用有效交换电流密度,因为它能更真实地反映实际电极性能。
有效交换电流密度的计算公式如下:
j = j 0 r e f a c L c ( P r P r r e f ) γ e x p [ − E c R T ( 1 − T T r e f ) ] j=j_{0}^{ref}a_{c}L_{c}\left ( \frac{P_{r}}{P_{r}^{ref}} \right )^{\gamma } exp\left [ -\frac{E_{c}}{RT}\left ( 1-\frac{T}{T_{ref}} \right ) \right ] j=j0refacLc(PrrefPr)γexp[RTEc(1TrefT)]

4.电化学动力学奠基石B-V方程

Bulter-Volumer Equation的两种形式如下:
j = j 0 [ e x p ( α R d F ( E − E r ) R T ) − e x p ( α O x F ( E − E r ) R T ) ] j=j_{0}\left [ exp\left (\frac{\alpha _{Rd}F\left ( E-E_{r} \right )}{RT} \right ) -exp\left (\frac{\alpha _{Ox}F\left ( E-E_{r} \right )}{RT} \right )\right ] j=j0[exp(RTαRdF(EEr))exp(RTαOxF(EEr))]

j = j 0 [ e x p ( α n F η a c t R T ) − e x p ( − ( 1 − α ) n F η a c t R T ) ] j=j_{0}\left [ exp\left (\frac{\alpha nF\eta_{act}}{RT} \right ) -exp\left (\frac{-\left ( 1-\alpha \right ) nF\eta_{act} }{RT} \right )\right ] j=j0[exp(RTαnFηact)exp(RT(1α)nFηact)]
注意:
a.可以看出,活化过电势越大,电流密度越大。
b.仔细观察,两种形式右侧分子项存在区别(是否有n),这是因为
α R d = α ∗ n \alpha _{Rd} = \alpha * n αRd=αn
因此,对于阳极来说n=2,阴极来说n=4。此外,在仿真时尤其是使用商业软件仿真时,需要注意软件中的BV公式是如何描述的。ps.FLUENT中燃料电池模块用的第一个公式。

5.活化损失计算Tafel公式

η a c t = a + b l n i \eta _{act}=a+blni ηact=a+blni a = − R T n F l n ( i 0 ) a=-\frac{RT}{nF}ln\left ( i_{0} \right ) a=nFRTln(i0) b = − R T n F b=-\frac{RT}{nF} b=nFRT
也可以表达为:
η a c t a n o d e + η a c t c a t h = R T n F α l n ( i i 0 ) a n o d e + R T n F α l n ( i i 0 ) c a t h o d e \eta _{actanode}+\eta _{actcath}=\frac{RT}{nF\alpha }ln\left ( \frac{i}{i_{0}}\right )_{anode}+\frac{RT}{nF\alpha }ln\left ( \frac{i}{i_{0}}\right )_{cathode} ηactanode+ηactcath=nFαRTln(i0i)anode+nFαRTln(i0i)cathode

考虑到阳极的交换电流密度大的多,因此一般可以忽略阳极的活化损失。

6.计算案例

在这里插入图片描述

%  0维模型计算极化曲线
clc;clear;
% 参数设定
R = 8.314;                      % 理想气体常数 j/mol*K
n = 4;                          % 每mol的O2转移的电子摩尔数
Alpha = 0.25;                   % 传输系数
i0 = 10^(-6.912);               % 交换电流密度
iL = 1.41;                      % 极限电流密度
F = 96485;                      % 法拉第常数
r = 0.19;                       % 内阻 Ω/cm2
Tk = 333;                       % K
Tc = 60;                        % ℃
P_H2    = 3;                    % 氢气压力 atm
P_air   = 3;                    % 空气压力 atm             
Et = 1.19;                     
% step.1 压力计算及能斯特电压计算
P_H2O = 0.9869*10^(-2.1794+0.02953*Tc-9.1837e-5*Tc^2+1.4454e-7*Tc^3);       % 水饱和蒸气压 

loop = 1;
for fid = 1 : 1400
    i = 0.001 * fid;             % 电流密度 A/cm2
    PP_H2(loop) = 0.5*P_H2./exp(1.653*i/(Tk^1.334))-P_H2O;            
    PP_O2(loop) = P_air./exp(4.192*i/(Tk^1.334))-P_H2O;                                 
    
    % 计算三部分电压损失
    B = R*Tk/(n*F*Alpha);
    V_act(loop) = -B * log(i/i0);     % 极化损失V
    V_ohmic(loop) = -(i*r);           % 欧姆损失V
    term = 1 - i/iL;
    if term > 0
        V_conc(loop) = (R*Tk/n/F)*(1+1/Alpha)*log(1-(i/iL));
    else
        V_conc(loop) = 0;
    end
    % 能斯特电压计算 包括温度修正
    V_nerst(loop) =  Et - R*Tk*log(P_H2O/(PP_H2(loop)*PP_O2(loop)^0.5))/(2*F);
    V_out(loop) = V_nerst(loop) + V_act(loop) + V_ohmic(loop) + V_conc(loop);
    loop = loop + 1;
end
current_density = 0.001:0.001:1.40;

figure1 = figure('color',[1 1 1]);
hdlp = plot(current_density,V_out);
title('Fuel cell polarization curve','FontSize',14,'FontWeight','Bold');
xlabel('Current density /A·cm-2','FontSize',12,'FontWeight','Bold')
ylabel('Activation losses /V','FontSize',12,'FontWeight','Bold')
set(hdlp,'LineWidth',1.5);
grid on;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/17630.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【五一创作】ERP实施-委外业务-委外采购业务

委外业务主要有两种业务形态:委外采购和工序外协,委外采购主要是在MM模块中实现,工序外协主要由PP模块实现,工序外协中的采购订单创建和采购收货由MM模块实现。 委外采购概念 委外采购,有些企业也称为带料委外或者分包…

牛客刷SQL题Day5

SQL69 返回产品并且按照价格排序 select prod_name , prod_price from Products where prod_price between 3 and 6 select prod_name , prod_price from Products where 6>prod_price and prod_price >3 踩坑1: between......and.......包括边界。 踩坑2&am…

网卡丢失导致集群异常

假期晚上有个电话,说集群故障,应用无法连接,节点一可以ssh登录,节点二已无法正常登录了,在节点一上需要ssh 私网ip地址才可以登录节点二,虽不是重点客户,有问题还是需要积极处理。 首先看集群状…

Cartesi 2023 年 4 月回顾

查看你不想错过的更新 2023年5月1日,感谢Cartesi生态系统中所有了不起的构建者! 在一个激动人心的旅程之后,我们的首届全球线上黑客马拉松正式结束了!有超过200名注册建造者参加,见证了所有参与者展示的巨大才华和奉献…

有必要给孩子买台灯吗?分享四款高品质的护眼台灯

有必要使用护眼台灯,尤其是有近视现象的孩子们。 现在很多孩子小学就开始近视了,保护视力刻不容缓呀! 很多人不知道,其实劣质光线是最大的眼睛杀手 给孩子随便买便宜的台灯,看着一样能用,其实时间久了 对孩子眼睛的…

SpringCloud:ElasticSearch之RestClient查询文档

文档的查询同样适用RestHighLevelClient对象,基本步骤包括: 1)准备Request对象2)准备请求参数3)发起请求4)解析响应 1.快速入门 我们以match_all查询为例 1.1.发起查询请求 代码解读: 第一步…

【《中国工业经济》数据复现】数字化转型与企业分工:专业化还是纵向一体化

一.研究内容 本文使用机器学习方法刻画微观企业数字化水平,并在构建数理模型的基础上实证考察了企业数字化转型对企业分工的影响及其机理。结果表明,企业数字化转型显著提升了中国上市企业专业化分工水平。机制分析表明,数字化转型对企业专业…

ReentrantLock原理剖析

前言 本文主要讲解底层逻辑,基本不会贴代码,目的是让大家能够真正的知晓原理,对照着逻辑去理解代码看代码也会很快就能看懂。 在讲ReentrantLock原理之前,我们先回顾下ReentrantLock的基本用法。ReentrantLock是一个锁编程api&am…

考研机试刷题第二天:任意进制转任意进制【高进度短除法】

理一下思路&#xff1a; 看了y总的视频之后我觉得这道题其实只需要对上次写的进制转换微微做一下调整即可。 于是我写出了下面的代码 #include <iostream> #include <vector> #include <algorithm> #include <cstring>using namespace std;vector<…

Moonbeam操作指南|如何使用Gelato创建自动化任务

Gelato是一个Web3去中心化自动化网络&#xff0c;允许开发者横跨多个基于EVM兼容区块链上自动化和连接任意的智能合约执行。&#x1f4d1;阅读中文版详细操作教程 举例来说&#xff0c;我们将使用MetaMask作为钱包。同时&#xff0c;您的钱包余额中需要有一些GLMR用于支付自动…

基于海洋捕食者算法的极限学习机(ELM)回归预测-附代码

基于海洋捕食者算法的极限学习机(ELM)回归预测 文章目录 基于海洋捕食者算法的极限学习机(ELM)回归预测1.极限学习机原理概述2.ELM学习算法3.回归问题数据处理4.基于海洋捕食者算法优化的ELM5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;本文利用海洋捕食者算法对极限学习…

深度学习笔记--本地部署Mini-GPT4

目录 1--前言 2--配置环境依赖 3--下载权重 4--生成 Vicuna 权重 5--测试 6--可能出现的问题 1--前言 本机环境&#xff1a; System: Ubuntu 18.04 GPU: Tesla V100 (32G) CUDA: 10.0 项目地址&#xff1a;https://github.com/Vision-CAIR/MiniGPT-4 2--配置环境依赖 …

python面试题

文章目录 赋值、深拷贝和浅拷贝有什么区别&#xff1f;元组和列表有什么不同&#xff1f;和is有什么不同&#xff1f;集合怎么转字典&#xff1f;字典怎么遍历&#xff1f;如何在Python中实现多线程&#xff1f;如何实现tuple和list的转换&#xff1f;实现删除一个list里面的重…

智能无人蜂群作战系统适应性进化模型仿真研究

源自&#xff1a;系统仿真学报 作者&#xff1a;李志强, 李元龙, 殷来祥, 马向平 摘 要 智能无人蜂群作战系统主要由有限行为能力的大规模作战个体组成&#xff0c;一般不具备应对复杂战场环境和作战对手变化的适应能力。采用遗传算法与增强学习相结合的方法探索构建基于个体…

Tre靶场通关过程(linpeas使用+启动项编辑器提权)

Tre靶场通关 通过信息收集获得到了普通用户账号密码&#xff0c;利用PEASS-ng的linpeas脚本进行提权的信息收集&#xff0c;根据已有信息进行提权。 靶机下载地址&#xff1a; https://download.vulnhub.com/tre/Tre.zip 信息收集 靶机IP探测&#xff1a;192.168.0.129 a…

vue2实现高德地图 JSAPI 2.0轨迹回放组件(MoveAnimation)

vue2实现高德地图 JSAPI 2.0轨迹回放组件(MoveAnimation) 声明: 本人是做java后端的,组件抽取不是很规范请大家见谅 前提: 需要注册高德开放平台,之后创建应用并且开通Web端(JS API)平台,然后拿到securityJsCode和key 实现效果: 1. 基础抽取 注意: 将securityJsCode和key修改为…

Hystrix线程池问题

背景&#xff1a;在一个以springcloud为基础架构的微服务项目中&#xff0c;活动期间并发量一大就会出现服务调用失败的问题。经定位发现&#xff0c;被调用服务中无对应的请求日志&#xff0c;继续通过日志查询确认是feign调用时出现服务降级&#xff0c;进入降级方法统一返回…

极化码的入门与探索

文章目录 极化码的基础先验知识二进制输入离散无记忆信道模型(Binary-input Discreten Memoryless Channel, B-DMC)二进制离散输入信道的ML判决和错误率B-DMC相关参数的定义和理解 两信道极化N信道极化的解释信道极化分解的蝶形结构补充&#xff1a;生成矩阵的结构 极化码的基础…

【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 42页论文及代码

相关信息 &#xff08;1&#xff09;建模思路 【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 详细建模过程解析及代码实现 【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 详细建…

C6678学习-EDMA

文章目录 1、简介1. EDMA3概述2、EDMA3的组成3、EDMA3的工作流程4、EDMA3通道控制器&#xff08;EDMA3CC&#xff09;5、触发方式 2、EDMA3的传输1、传输数据块的定义2、传输类型3、参数PaRAM4、通道5、OPT参数 3、补充1、EDMA3通道控制器区域 1、简介 1. EDMA3概述 基于C66x…