一种全新且灵活的 Prompt 对齐优化技术

并非所有人都熟知如何与 LLM 进行高效交流。

一种方案是,人向模型对齐。 于是有了 「Prompt工程师」这一岗位,专门撰写适配 LLM 的 Prompt,从而让模型能够更好地生成内容。

而另一种更为有效的方案则是,让模型向人对齐。 这也是大模型研究中非常重要的问题,无论是 GPT 还是 Claude,在对齐技术上花费大量的时间与精力。但,随着模型规模变大,基于训练的对齐技术也需要耗费更大量的资源。

因此,我们提出另外的一种方案,即黑盒提示对齐优化技术(Black-box Prompt Optimization),通过优化用户指令,从输入角度对模型进行对齐。

图片

这种方法可以在不对 LLM 进行训练的情况下,大幅提升与人类偏好的对齐程度。

而且 BPO 可以被替换到各种模型上,包括开源模型和基于API的模型。

下面是我们做的一个简单评估:

图片

在 VicunaEval 上使用 GPT-4 进行自动评估,BPO 能够大幅提升 ChatGPT、Claude 等模型的人类偏好,并助力 llama2-13b 模型大幅超过 llama2-70b 的版本。

_论文:https://arxiv.org/abs/2311.04155
_

代码:https://github.com/thu-coai/BPO

技术交流群

建了技术答疑、交流群!想要进交流群、资料的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

方式①、添加微信号:mlc2060,备注:技术交流
方式②、微信搜索公众号:机器学习社区,后台回复:技术交流

在这里插入图片描述

一、方 法

BPO黑盒优化的目标是让模型更好地理解和满足人类的喜好。我们通过调整输入内容,使模型生成的输出更符合用户的期望。这个过程可以分为三个主要步骤:

图片

**1、反馈数据收集:**为了建模人类偏好,我们首先搜集了一系列带有反馈信号的开源指令微调数据集,并对这些数据经过精心筛选和过滤。

**2、构造提示优化对:**我们使用这些反馈数据来引导大型模型识别出用户偏好的特征。我们首先让模型分析用户喜欢的回复和不喜欢的回复,找出其中蕴含的人类偏好特征。接着,基于这些特征,我们再利用模型优化原始的用户输入,以期得到更符合用户喜好的模型输出。

**3、训练提示优化器:**经过步骤一和步骤二,我们得到了大量隐含人类偏好的提示对。利用这些提示对,我们训练一个相对较小的模型,从而构建提示偏好优化器。

最终,我们可以利用该提示优化器对用户指令进行优化,并应用在广泛的LLM上。

二、效 果

我们基于英文部分开源反馈数据集和 llama2-chat-7b 构建了 BPO 优化模型。

BPO对齐技术对 GPT-3.5-turbo 有22%的提升,对 GPT-4 有 10% 的提升。

图片

BPO 能够助力 llama2-13b 大幅超过 llama2-70b 版本的模型效果,并让 llama2-7b 版本的模型逼近比它大 10 倍的模型。

图片

在 vicuna-7b 和 vicuna-13b 上,使用 BPO 对齐的模型超过了常用的反馈学习方法—— PPO(Proximal Policy Optimization) 和 DPO(Direct Preference Optimization)的效果,并且能够和这些方法相结合进一步提升模型效果。

图片

此外,BPO还可以用于提升SFT数据的质量,帮助构建更高质量的SFT模型。

图片

三、研究者说

问:BPO 和反馈学习方法(PPO、DPO)以及 Prompt Engineering方法(如OPRO)的区别是什么?

答:与PPO和DPO相比,BPO最大的优势在于不需要训练原本的LLM,只需要额外训练一个较小的模型即可,并且我们的实验证明这两种技术是可以相结合的。

图片

与 OPRO 对比,BPO 最大的特点在于更加通用,OPRO 等现有的 Prompt Engineering 技术大多需要针对特定的数据进行搜索,并且会搜索得到一个针对特定任务的提示。因此,如果用户希望使用此类方法,需要针对每种任务准备相应的数据集。而 BPO 在训练得到提示优化器后,可以优化各种用户指令。

问:BPO能否针对一条指令进行迭代优化?

答:我们在 VicunaEval 数据上验证了迭代优化指令的效果,大约在第四轮时,优化后的指令对 ChatGPT 效果最好。

图片

问:BPO 究竟对用户指令做了怎样的优化?

答:我们在论文的第五小节总结了BPO的一些常见优化策略,包括:推理解释、完善用户问题、要点提示以及安全增强。

图片

图片

图片

图片


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/174802.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ES 查询语法-详解

文章目录 1.DSL查询文档1.1.DSL查询分类1.2.全文检索查询1.2.1.使用场景1.2.2.基本语法1.2.3.总结 1.3.精准查询1.3.1.term查询1.3.2.总结 1.DSL查询文档 elasticsearch的查询依然是基于JSON风格的DSL来实现的。 1.1.DSL查询分类 Elasticsearch提供了基于JSON的DSL&#xff…

信号的处理时机(内核态,用户态,如何/为什么相互转换,内核空间,cpu寄存器),信号的处理流程详细介绍+抽象图解

目录 信号的处理时机 引入 思考 -- 什么时候才能算合适的时候呢? 用户态转为内核态 引入 内核地址空间 引入 思考 -- 进程为什么能切换成内核态呢? 虚拟地址空间 注意点 原理 (总结一下) 为什么如何进入内核态 引入 介绍 底层原理(int 80) cpu的寄存器 用…

LOIS: Looking Out of Instance Semanticsfor Visual Question Answering

目录 一、论文速读 1.1 摘要 1. 2 论文概要总结 二、论文精度 2.1 论文试图解决什么问题? 2.2 论文中提到的解决方案之关键是什么? 2.3 用于定量评估的数据集是什么?代码有没有开源? 2.4 这篇论文到底有什么贡献&#xff…

智能座舱架构与芯片- (15) 测试篇 下

三、持续集成与交付 3.1 自动化编译框架 在智能座舱软件中,分为上层应用软件和底层软件。有些上层应用软件是与指令集平台无关的,例如Java应用程序等,它们对所运行的CPU平台没有依赖性,可以很好的适配当前平台进行执行。而在底层…

基于WEB的停车场管理系统的设计和实现【附源码】

基于WEB的停车场管理系统的设计和实现 摘 要 随着现代社会的快速发展,人民生活水平快速提高,汽车的数量飞速增加,与此同时停车问题也越来越受到人们的关注,为了实现对停车场进行有效的管理,结合一些停车场的模式和现状…

机器学习与计算机视觉 D2

整合为学习笔记!参考阅读了几位大佬的作品,已标注出处~ 机器学习的数学基础 线性与非线性变换 从几何意义上,线性变换表示的是直线的特性,符合两个性质: 变换前后零点不变,变换前后直线还是直线。 线性变换意味着可以…

亚马逊美国站买家号注册流程

注册亚马逊美国站买家号一般用邮箱及手机号注册就可以了,具体操作如下: 1、在浏览器里面输入亚马逊美国站的官网地址。 2、点击注册,输入姓名、邮箱或手机号、密码,然后进行验证邮箱或者手机号。如果是用的邮箱进行注册验证&…

c语言上机作业:给函数增加防御机制

1.题目 2.思路 1.首先,我们可以知道,我们必须先要把z求出来,但这里需要注意的是x,y并不包含了全部的定义域,所以我们必须先判断是否输入的数据满足条件。而这,就是我们所需要突破的函数的防御,…

单链表——OJ题(一)

目录 ​一.前言 二.移除链表元素 三.返回链表中间节点 四.链表中倒数第K个节点 五.合并两个有序链表 六.反转链表 七.链表分割 八.链表的回文结构 九.相交链表 十.环形链表 十一.环形链表(二) ​六.结语 一.前言 本文主要对平时的链表OJ进行…

Vue2+Vue3

文章目录 第 1 章:Vue 核心1、 Vue 简介1.官网2.介绍与描述3. Vue 的特点4. 与其它 JS 框架的关联5. Vue 周边库 2、初始Vue3、模板语法1、Vue模板语法有2大类:2、插值语法和指令语法 4、数据绑定1. 单向数据绑定2. 双向数据绑定 5、el与data的两种写法1.e1有2种写法…

专访特斯拉工程师杨硕:跟着机器人上天入地、探索地外行星丨智源独家

导读 十几岁时,他痴迷《终结者》,曾在百科全书中窥见卡内基梅隆大学机械臂的介绍,从而得知了研究机器人「圣地」的存在。 在CMU,他深耕足式机器人感知定位算法,期待未来涉足太空,走上火星。 在大疆&#xf…

水果音乐制作软件FL Studio21.2中文版新功能介绍

FL Studio21.2中文版,一般又称水果音乐制作软件。 FL Studio 21.2简称FL,全称FruityLoopsStudio,因此国人习惯叫它"水果"。它让你的计算机就像是全功能的录音室,大混音盘,非常先进的制作工具,让…

【C语言】数据结构——栈和队列实例探究

💗个人主页💗 ⭐个人专栏——数据结构学习⭐ 💫点击关注🤩一起学习C语言💯💫 目录 导读:一、 栈1. 栈的概念及结构2. 栈的实现3. 实现代码3.1 定义结构体3.2 初始化栈3.3 销毁栈3.4 入栈3.5 出栈…

java io流中为什么使用缓冲流就能加快文件读写速度

FileInputStream的read方法底层确实是通过调用JDK层面的read方法,并且这个JDK层面的read方法底层是使用C语言编写的,以实现高效的文件读取功能。但是它会涉及多次内核态与操作系统交互。当我们使用FileInputStream的read方法读取文件时,首先会…

微服务 Spring Cloud 8,开源RPC框架如何选型?

目录 一、开源RPC框架有哪些?1、跟语言平台绑定的开源RPC框架2、跨语言平台的开源RPC框架 二、跟语言平台绑定的开源RPC框架 -- Dubbo1、Dubbo的架构主要包含四个角色2、Dubbo的调用框架是如何实现的? 三、如何选择?四、跨语言平台的开源RPC框…

继承【C++】

继承【C】 一.什么是继承?二. 继承的方式与权限三. 继承中的成员3.0 基类和派生类中的重名成员i. 限定符ii. 隐藏 3.1 继承与默认成员函数i. 默认构造ii. 析构函数 3.2 继承与友元函数3.3 继承与静态成员变量 四. 基类和派生类的赋值五. 多继承5.1 菱形继承5.2 菱形…

CFCA证书——基于SM2/3算法的安全信任

在中国金融认证中心(CFCA)发行的证书中,采用了最新的国密SM2/3算法来提供更高的安全保障。这一创新举措进一步增强了我国网络安全能力,并为用户提供了一种更可靠、更安全的选择。 SM2/3算法是中国自主研发的非对称加密算法&#…

瑞格心理咨询系统设置多个管理员的操作方法

使用瑞格心理咨询系统,需要设置多个admin权限的管理员账号来管理,咨询厂家答复只能有1个管理员,个人觉得不可能,于是开始折腾。 解决办法: 在没有数据字典的情况下, 通过遍历数据库,发现用户信…

python趣味编程-5分钟实现一个石头剪刀布游戏(含源码、步骤讲解)

Python 中的石头剪刀布代码是 使用Tkinter和图形用户界面(GUI)设计的。 Python 石头剪刀布游戏是使用Python 编程语言开发的简单桌面应用程序。 项目系统文件包含资源文件和Python脚本。游戏画面流畅,用户控制起来很容易。

大数据:SAS数据分析1,数据步,和过程步

大数据:SAS数据分析 2022找工作是学历、能力和运气的超强结合体,遇到寒冬,大厂不招人,可能很多算法学生都得去找开发,测开 测开的话,你就得学数据库,sql,oracle,尤其sql…