JVM垃圾收集器

什么是垃圾收集器

Java虚拟机的垃圾收集器是内存回收的具体实现,主要用于回收不再使用的对象,释放内存空间。Java虚拟机提供了多种垃圾收集器,不同的垃圾收集器适用于不同的场景和需求。

在C++中,对象所占的内存在程序结束运行之前一直被占用,在明确释放之前不能分配给其它对象;而在Java中,当没有对象引用指向原先分配给某个对象的内存时,该内存便成为垃圾。JVM的一个系统级线程会自动释放该内存块。垃圾收集意味着程序不再需要的对象是"无用信息",这些信息将被丢弃。当一个对象不再被引用的时候,内存回收它占领的空间,以便空间被后来的新对象使用。事实上,除了释放没用的对象,垃圾收集也可以清除内存记录碎片。由于创建对象和垃圾收集器释放丢弃对象所占的内存空间,内存会出现碎片。碎片是分配给对象的内存块之间的空闲内存洞。碎片整理将所占用的堆内存移到堆的一端,JVM将整理出的内存分配给新的对象。

这篇文章只分享Serial收集器、Parallel Scavenge收集器、ParNew收集、CMS收集器,G1和ZGC会在后续文章更新。

在讲解垃圾收集器前,优先了解垃圾收集算法、垃圾判断算法、Java中的四种引用类型。

Java中常见引用类型

java的引用类型一般分为四种:强引用、软引用、弱引用、虚引用。

强引用: 强引用是平常使用最多的引用,强引用在程序内存不足时也不会被回收,使用方式:

String str = new String("str");
System.out.println(str);

软引用: 软引用在程序内存不足时会被回收,使用方式:

// 注意:wrf这个引用也是强引用,它是指向SoftReference这个对象的,
// 这里的软引用指的是指向new String("str")的引用,也就是SoftReference类中T
SoftReference<String> wrf = new SoftReference<String>(new String("str"));

弱引用: 弱引用就是JVM垃圾回收器发现它,就会被回收。

// str就是弱引用
WeakReference<String> wrf = new WeakReference<String>(str);

虚引用: 虚引用的回收机制跟弱引用差不多,但是它被回收之前,会被放入 ReferenceQueue 中。注意哦,其它引用是被JVM回收后才被传入 ReferenceQueue 中的。由于这个机制,所以虚引用大多被用于引用销毁前的处理工作。还有就是,虚引用创建的时候,必须带有 ReferenceQueue

PhantomReference<String> prf = new PhantomReference<String>(new String("str"),
new ReferenceQueue<>());

垃圾判断算法

引用计数法

假设有个一对象ClassA,任何一个对象引用了ClassA,ClassA的引用计数器就会加1,引用失效引用计数器就会减1。如果ClassA引用计数器为0,那么ClassA就会被回收。

这个方法实现简单,效率高,但是目前主流的虚拟机中并没有选择这个算法来管理内存,其最主要的原因是它很难解决对象之间相互循环引用的问题。

可达性分析算法

可达性分析法也被称之为根搜索法,可达性是指,如果一个对象被一个或多个在程序中的变量,通过直接或间接方式被其它可达的对象引用,那么该对象就是可达的。更准确的说,一个对象只有满足下述两个条件之一,就会被判断为可达的:

  1. 对象是属于根集中的对象
  2. 对象被一个可达的对象引用

在这里,我们引出了一个专有名词,“根集”,指正在执行的Java程序可以访问的引用变量的集合,程序可以使用引用变量访问对象的属性和调用对象的方法。在 JVM 中,会将以下对象标记为根集中的对象,具体包括:

  1. 虚拟机栈(栈帧中的本地变量表)中引用的对象
  2. 方法区中的常量引用的对象
  3. 方法区中的类静态属性引用的对象
  4. 本地方法栈中 JNI(Native 方法)的引用对象

根集中的对象称之为GC Roots,即根对象。可达性分析法的基本思路是:将一系列的根对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链,如果一个对象到根对象没有任何引用链相连,那么这个对象就不是可达的,也称之为不可达对象。

在这里插入图片描述
如上图所示,形象的展示了可达对象与不可达对象,其中灰色的是不可达对象,可以被垃圾收集的对象。在可达性分析法中,对象有两种状态,要么是可达的、要么是不可达的,在判断一个对象的可达性的时候,就需要对对象进行标记。

垃圾收集算法

在这里插入图片描述

分代收集理论

当前虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将java堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。

比如在新生代中,每次收集都会有大量对象(近99%)死去,所以可以选择复制算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集。而老年代的对象存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选择“标记-清除”“标记-整理”算法进行垃圾收集。注意,“标记-清除”“标记-整理”算法会比复制算法慢10倍以上。

标记-复制算法

为了解决效率问题,“复制”收集算法出现了。它可以将内存分为大小相同的两块,每次使用其中的一块。当这一块的内存使用完后,就将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收。

在这里插入图片描述

标记-清除算法

算法分为“标记”“清除”阶段:标记存活的对象, 统一回收所有未被标记的对象(一般选择这种);也可以反过来,标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象 。它是最基础的收集算法,比较简单,但是会带来两个明显的问题:

  1. 效率问题 (如果需要标记的对象太多,效率不高)
  2. 空间问题(标记清除后会产生大量不连续的碎片)

在这里插入图片描述

标记-整理算法

根据老年代的特点得出的一种标记算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象回收,而是让所有存活的对象向一端移动,然后直接清理掉端边界以外的内存。

在这里插入图片描述

垃圾收集器

如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。

虽然我们对各个收集器进行比较,但并非为了挑选出一个最好的收集器。因为直到现在为止还没有最好的垃圾收集器出现,更加没有万能的垃圾收集器,我们能做的就是根据具体应用场景选择适合自己的垃圾收集器。试想一下:如果有一种四海之内、任何场景下都适用的完美收集器存在,那么我们的Java虚拟机就不会实现那么多不同的垃圾收集器了。

在这里插入图片描述

Serial收集器

使用:-XX:+UseSerialGC -XX:+UseSerialOldGC

Serial(串行)收集器是最基本、历史最悠久的垃圾收集器了。大家看名字就知道这个收集器是一个单线程收集器了。它的“单线程”的意义不仅仅意味着它只会使用一条垃圾收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集工作的时候必须暂停其他所有的工作线程( "Stop The World" ),直到它收集结束。

新生代采用复制算法,老年代采用标记-整理算法。

在这里插入图片描述
虚拟机的设计者们当然知道Stop The World带来的不良用户体验,所以在后续的垃圾收集器设计中停顿时间在不断缩短(仍然还有停顿,寻找最优秀的垃圾收集器的过程仍然在继续)。

但是Serial收集器有没有优于其他垃圾收集器的地方呢?当然有,它简单而高效(与其他收集器的单线程相比)。Serial收集器由于没有线程交互的开销,自然可以获得很高的单线程收集效率。

Serial Old收集器是Serial收集器的老年代版本,它同样是一个单线程收集器。它主要有两大用途:一种用途是在JDK1.5以及以前的版本中与Parallel Scavenge收集器搭配使用,另一种用途是作为CMS收集器的后备方案。

Parallel Scavenge收集器

使用:-XX:+UseParallelGC(年轻代),-XX:+UseParallelOldGC(老年代)

Parallel收集器其实就是Serial收集器的多线程版本,除了使用多线程进行垃圾收集外,其余行为(控制参数、收集算法、回收策略等等)和Serial收集器类似。默认的收集线程数跟cpu核数相同,当然也可以用参数(-XX:ParallelGCThreads)指定收集线程数,但是一般不推荐修改。

Parallel Scavenge收集器关注点是吞吐量(高效率的利用CPU)。CMS等垃圾收集器的关注点更多的是用户线程的停顿时间(提高用户体验)。所谓吞吐量就是CPU中用于运行用户代码的时间与CPU总消耗时间的比值。 Parallel Scavenge收集器提供了很多参数供用户找到最合适的停顿时间或最大吞吐量,如果对于收集器运作不太了解的话,可以选择把内存管理优化交给虚拟机去完成也是一个不错的选择。

新生代采用复制算法,老年代采用标记-整理算法。

在这里插入图片描述
Parallel Old收集器是Parallel Scavenge收集器的老年代版本。使用多线程和“标记-整理”算法。在注重吞吐量以及CPU资源的场合,都可以优先考虑 Parallel Scavenge收集器和Parallel Old收集器(JDK8默认的新生代和老年代收集器)。

ParNew收集器

-XX:+UseParNewGC

ParNew收集器其实跟Parallel收集器很类似,区别主要在于它可以和CMS收集器配合使用。

新生代采用复制算法

在这里插入图片描述

它是许多运行在Server模式下的虚拟机的首要选择,除了Serial收集器外,只有它能与CMS收集器(真正意义上的并发收集器)配合工作。

CMS收集器

-XX:+UseConcMarkSweepGC(old)

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它非常符合在注重用户体验的应用上使用,它是HotSpot虚拟机第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。

从名字中的Mark Sweep这两个词可以看出,CMS收集器是一种“标记-清除”算法实现的,它的运作过程相比于前面几种垃圾收集器来说更加复杂一些。整个过程分为四个步骤:

  • 初始标记: 暂停所有的其他线程(STW),并记录下gc roots直接能引用的对象,速度很快。
  • 并发标记: 并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程, 这个过程耗时较长但是不需要停顿用户线程, 可以与垃圾收集线程一起并发运行。因为用户程序继续运行,可能会有导致已经标记过的对象状态发生改变。
  • 重新标记: 重新标记阶段就是为了修正并发标记期间因为用户程序继续运行而导致标记产生变动的那一部分对象的标记记录(主要是处理漏标问题),这个阶段的停顿时间一般会比初始标记阶段的时间稍长,远远比并发标记阶段时间短。主要用到三色标记里的增量更新算法(见下面详解)做重新标记。
  • 并发清理: 开启用户线程,同时GC线程开始对未标记的区域做清扫。这个阶段如果有新增对象会被标记为黑色不做任何处理(见下面三色标记算法详解)。
  • 并发重置: 重置本次GC过程中的标记数据。

在这里插入图片描述

从它的名字就可以看出它是一款优秀的垃圾收集器,主要优点:并发收集、低停顿。但是它有下面几个明显的缺点:

  • 对CPU资源敏感(会和服务抢资源);
  • 无法处理浮动垃圾(在并发标记和并发清理阶段又产生垃圾,这种浮动垃圾只能等到下一次gc再清理了);
  • 它使用的回收算法-“标记-清除”算法会导致收集结束时会有大量空间碎片产生,当然通过参数-XX:+UseCMSCompactAtFullCollection可以让jvm在执行完标记清除后再做整理
  • 执行过程中的不确定性,会存在上一次垃圾回收还没执行完,然后垃圾回收又被触发的情况,特别是在并发标记和并发清理阶段会出现,一边回收,系统一边运行,也许没回收完就再次触发full gc,也就是"concurrent mode failure",此时会进入stop the world,用serial old垃圾收集器来回收

CMS的相关核心参数

  1. -XX:+UseConcMarkSweepGC: 启用cms
  2. -XX:ConcGCThreads: 并发的GC线程数
  3. -XX:+UseCMSCompactAtFullCollection: FullGC之后做压缩整理(减少碎片)
  4. -XX:CMSFullGCsBeforeCompaction: 多少次FullGC之后压缩一次,默认是0,代表每次FullGC后都会压缩一次
  5. -XX:CMSInitiatingOccupancyFraction: 当老年代使用达到该比例时会触发FullGC(默认是92,这是百分比)
  6. -XX:+UseCMSInitiatingOccupancyOnly: 只使用设定的回收阈值(-XX:CMSInitiatingOccupancyFraction设定的值),如果不指定,JVM仅在第一次使用设定值,后续则会自动调整
  7. -XX:+CMSScavengeBeforeRemark: 在CMS GC前启动一次minor gc,降低CMS GC标记阶段(也会对年轻代一起做标记,如果在minor gc就干掉了很多对垃圾对象,标记阶段就会减少一些标记时间)时的开销,一般CMS的GC耗时 80%都在标记阶段
  8. -XX:+CMSParallellnitialMarkEnabled: 表示在初始标记的时候多线程执行,缩短STW
  9. -XX:+CMSParallelRemarkEnabled: 在重新标记的时候多线程执行,缩短STW;

垃圾收集底层算法实现

三色标记

在并发标记的过程中,因为标记期间应用线程还在继续跑,对象间的引用可能发生变化,多标和漏标的情况就有可能发生。漏标的问题主要引入了三色标记算法来解决。

三色标记算法是把Gc roots可达性分析遍历对象过程中遇到的对象, 按照“是否访问过”这个条件标记成以下三种颜色:

  • 黑色: 表示对象已经被垃圾收集器访问过, 且这个对象的所有引用都已经扫描过。 黑色的对象代表已经扫描过, 它是安全存活的, 如果有其他对象引用指向了黑色对象, 无须重新扫描一遍。 黑色对象不可能直接(不经过灰色对象) 指向某个白色对象。
  • 灰色: 表示对象已经被垃圾收集器访问过, 但这个对象上至少存在一个引用还没有被扫描过。
  • 白色: 表示对象尚未被垃圾收集器访问过。 显然在可达性分析刚刚开始的阶段, 所有的对象都是白色的, 若在分析结束的阶段,仍然是白色的对象, 即代表不可达。

在这里插入图片描述

多标-浮动垃圾

在并发标记过程中,如果由于方法运行结束导致部分局部变量(gc root)被销毁,这个gc root引用的对象之前又被扫描过(被标记为非垃圾对象),那么本轮GC不会回收这部分内存。这部分本应该回收但是没有回收到的内存,被称之为“浮动垃圾”。浮动垃圾并不会影响垃圾回收的正确性,只是需要等到下一轮垃圾回收中才被清除。

另外,针对并发标记(还有并发清理)开始后产生的新对象,通常的做法是直接全部当成黑色,本轮不会进行清除。这部分对象期间可能也会变为垃圾,这也算是浮动垃圾的一部分。

漏标-读写屏障

漏标会导致被引用的对象被当成垃圾误删除,这是严重bug,必须解决,有两种解决方案: 增量更新(Incremental Update)原始快照(Snapshot At The Beginning,SATB)

增量更新就是当黑色对象插入新的指向白色对象的引用关系时, 就将这个新插入的引用记录下来, 等并发扫描结束之后, 再将这些记录过的引用关系中的黑色对象为根, 重新扫描一次。 这可以简化理解为, 黑色对象一旦新插入了指向白色对象的引用之后, 它就变回灰色对象了。

原始快照就是当灰色对象要删除指向白色对象的引用关系时, 就将这个要删除的引用记录下来, 在并发扫描结束之后, 再将这些记录过的引用关系中的灰色对象为根, 重新扫描一次,这样就能扫描到白色的对象,将白色对象直接标记为黑色(目的就是让这种对象在本轮gc清理中能存活下来,待下一轮gc的时候重新扫描,这个对象也有可能是浮动垃圾)

以上无论是对引用关系记录的插入还是删除, 虚拟机的记录操作都是通过写屏障实现的。

记忆集与卡表

在新生代做GCRoots可达性扫描过程中可能会碰到跨代引用的对象,这种如果又去对老年代再去扫描效率太低了。

为此,在新生代可以引入记录集(Remember Set)的数据结构(记录从非收集区到收集区的指针集合),避免把整个老年代加入GCRoots扫描范围。事实上并不只是新生代、 老年代之间才有跨代引用的问题, 所有涉及部分区域收集(Partial GC) 行为的垃圾收集器, 典型的如G1、 ZGC和Shenandoah收集器, 都会面临相同的问题。

垃圾收集场景中,收集器只需通过记忆集判断出某一块非收集区域是否存在指向收集区域的指针即可,无需了解跨代引用指针的全部细节。

hotspot使用一种叫做“卡表”(Cardtable)的方式实现记忆集,也是目前最常用的一种方式。关于卡表与记忆集的关系, 可以类比为Java语言中HashMap与Map的关系。

卡表是使用一个字节数组实现:CARD_TABLE[ ],每个元素对应着其标识的内存区域一块特定大小的内存块,称为“卡页”。hotSpot使用的卡页是2^9大小,即512字节

在这里插入图片描述
一个卡页中可包含多个对象,只要有一个对象的字段存在跨代指针,其对应的卡表的元素标识就变成1,表示该元素变脏,否则为0。GC时,只要筛选本收集区的卡表中变脏的元素加入GCRoots里。

卡表变脏上面已经说了,但是需要知道如何让卡表变脏,即发生引用字段赋值时,如何更新卡表对应的标识为1。
Hotspot使用写屏障维护卡表状态。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/174427.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Spring】使用xml配置AOP

文章目录 1.前言2.xml配置AOP3. 总结 1.前言 在之前的学习中,都是使用注解的方式进行AOP的配置.其实使用xml配置文件也可以配置AOP. 2.xml配置AOP xml配置AOP方法如下: 添加相关依赖 <dependencies><dependency><groupId>org.springframework</groupId…

vue实现el-menu与el-tabs联动

效果图如下&#xff1a; 当标签栏很多的时候效果图如下&#xff1a; 左侧菜单布局 &#xff08;$route.path高亮显示激活路由 :default-active"$route.path"&#xff09; <el-menu:default-active"$route.path"class"el-menu-vertical-demo"b…

【Hello Go】Go语言文本文件处理

文本文件处理 字符串处理字符串操作ContainsJoinindexrepeatReplaceSplitTrimFields 字符串转换AppendFormatParse 正则表达式Json处理编码Json通过结构体生产Json通过map生产json 解码Json解析到结构体解析到interface 文件操作相关api介绍建立和打开文件关闭文件写文件读文件…

深度学习卫星遥感图像检测与识别 -opencv python 目标检测 计算机竞赛

文章目录 0 前言1 课题背景2 实现效果3 Yolov5算法4 数据处理和训练5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **深度学习卫星遥感图像检测与识别 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐…

优秀智慧园区案例 - 三亚市崖州湾科技城智慧园区,先进智慧园区建设方案经验

一、项目背景 三亚崖州湾科技城作为海南自贸港建设的重点园区&#xff0c;是重点推进的海南自贸港先导项目之一。崖州湾科技城全力抢抓有利时机&#xff0c;进一步拓宽发展思路&#xff0c;持续深化体制机制创新&#xff0c;牢牢把握“打造产学研城深度融合的聚集地”这一核心…

nodejs express vue uniapp新闻发布系统源码

开发技术&#xff1a; node.js&#xff0c;mysql5.7&#xff0c;vscode&#xff0c;HBuilder nodejs express vue uniapp 功能介绍&#xff1a; 用户端&#xff1a; 登录注册 首页显示搜索新闻&#xff0c;新闻分类&#xff0c;新闻列表 点击新闻进入新闻详情&#xff0…

代码随想录第六十三天 | 单调栈:寻找 左边 / 右边 距离当前元素最近的 更小 元素的 下标(暴力,双指针,单调栈)(84);代码随想录主要题目结束

1、寻找 左边 / 右边 距离当前元素最近的 更小 元素的 下标 1.1 leetcode 84&#xff1a;柱状图中最大的矩形 第一遍代码思路错了&#xff0c;如&#xff1a;输入[2,1,2]&#xff0c;对于2&#xff0c;因为比栈顶元素1大&#xff0c;然后就会直接得出2&#xff08;1&#xff…

vite构建项目不能使用require解决方案

在utils文件夹下创建一个getImgUrl.ts文件 /** vite的特殊性, 需要处理图片 */ export const require (imgPath: string) > {try {const handlePath imgPath.replace(, ..)console.log(handlePath::, imgPath)return new URL(handlePath, import.meta.url).href} catch (…

约束概念和分类、运用

约束的概念&#xff1a; 1. 约束是作用于表列上的规则&#xff0c;用于限制加入表的数据 2.约束的存在保证了数据库中数据的正确性&#xff0c;有效性和完整性。 约束的分类&#xff1a; 非空约束&#xff1a;NOT NULL 唯一约束&#xff1a;UNIQUE 主键约束&#xff1a;PRIMARY…

01-论文阅读-Deep learning for anomaly detection in log data: a survey

01-论文阅读-Deep learning for anomaly detection in log data: a survey 文章目录 01-论文阅读-Deep learning for anomaly detection in log data: a survey摘要I 介绍II 背景A 初步定义B 挑战 III 调查方法A 搜索策略B 审查的功能 IV 调查结果A 文献计量学B 深度学习技术C …

leetcode算法之分治-归并

目录 1.排序数组2.数组中的逆序对3.计算右侧小于当前元素的个数4.翻转对 1.排序数组 排序数组 //分治-归并 class Solution {int tmp[50010]; public:vector<int> sortArray(vector<int>& nums) {mergeSort(nums,0,nums.size()-1);return nums;}void mergeS…

线程池简介及其简单实现

如果需要频繁的创建销毁线程, 就需要想办法降低创建和销毁的开销, 而线程池就是一个很好的选择: 提前创建好一些线程, 等到需要使用线程的时候, 直接从池子里拿一个就好了, 当不再使用该线程时, 就放回到池子里. 那么此时就从 创建/销毁线程 -> 池子里取线程/将线程还到池子…

找不到vcruntime140_1.dll,无法继续执行代码怎么办?5个可以解决的方案分享

在计算机使用过程中&#xff0c;我们经常会遇到一些错误提示&#xff0c;其中之一就是“VCRuntime140_1.dll缺失”。这个错误通常会导致某些应用程序无法正常运行。为了解决这个问题&#xff0c;我们需要进行修复操作。本文将介绍5个修复VCRuntime140_1.dll缺失的方法&#xff…

解锁电力安全密码:迅软DSE助您保护机密无忧

电力行业信息化水平不断提高&#xff0c;明显提升了电力企业的生产运营能力&#xff0c;然而随着越来越多重要信息存储在终端计算机中&#xff0c;电力面临的信息安全挑战也越来越多。 作为关键基础设施的基础&#xff0c;电力企业各部门产生的资料文档涵盖着大量机密信息&…

微信小程序 prettier 格式化

一、安装prettier插件 二、打开设置 然后再打开setting.json 新增代码 {"editor.formatOnSave": true,"editor.defaultFormatter": "esbenp.prettier-vscode","prettier.documentSelectors": ["**/*.wxml", "**/*.wx…

基于AVR单片机的移动目标视觉追踪系统设计与实现

基于AVR单片机的移动目标视觉追踪系统是一种常见的应用领域&#xff0c;旨在通过摄像头采集图像数据并使用图像处理和追踪算法实现对移动目标的实时追踪。本文将介绍基于AVR单片机的移动目标视觉追踪系统的设计原理和实现步骤&#xff0c;并提供相应的代码示例。 1. 设计概述 …

革新突破!智能指标平台引领时代,国产大模型与企业级部署的完美结合

11月21日&#xff0c;跬智信息&#xff08;Kyligence&#xff09;圆满召开了线上数智论坛暨产品发布会&#xff0c;升级智能一站式指标平台 Kyligence Zen 及 AI 数智助理 Kyligence Copilot 的一系列企业级能力&#xff0c;包括正式支持智谱 AI、百川智能等在内的多款国产大模…

SVN创建分支

一 从本地创建方式可指定版本号进行分支创建。 1、在本地目录右击 -----> 点击branch/tag(分支/标签) From: 源&#xff0c;可指定具体的版本号&#xff0c; To path: 可通过"..."选择分支路径 最后点击确定&#xff0c;交由服务器执行创建。 二 通过SVN客…

List操作的一些常见问题

文章目录 阿里巴巴开发手册强制规约&#xff1a;1. Arrays.asList转换基本类型数组2. Arrays.asList返回的List不支持增删操作3. 对原始数组的修改会影响到我们获得的那个List4. ArrayList.subList强转ArrayList导致异常5. ArrayList中的subList切片造成OOM6.Copy-On-Write 是什…

上海亚商投顾:北证50指数大涨 机器人概念股掀涨停潮

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 一.市场情绪 三大指数昨日震荡反弹&#xff0c;黄白二线有所分化&#xff0c;题材热点轮动表现。北证50指数大涨超3%&#…