竞赛 题目:基于深度学习的手势识别实现

文章目录

  • 1 前言
  • 2 项目背景
  • 3 任务描述
  • 4 环境搭配
  • 5 项目实现
    • 5.1 准备数据
    • 5.2 构建网络
    • 5.3 开始训练
    • 5.4 模型评估
  • 6 识别效果
  • 7 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的手势识别实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 项目背景

手势识别在深度学习项目是算是比较简单的。这里为了给大家会更好的训练。其中的数据集如下:

在这里插入图片描述

3 任务描述

图像分类是根据图像的语义信息将不同类别图像区分开来,是计算机视觉中重要的基本问题。手势识别属于图像分类中的一个细分类问题。虽然与NLP的内容其实没有多大的关系,但是作为深度学习,DNN是一个最为简单的深度学习的算法,它是学习后序CNN、RNN、Lstm以及其他算法深度学习算法的基础。

实践环境:Python3.7,PaddlePaddle1.7.0。

用的仍然是前面多次提到的jupyter notebook,当然我们也可以用本地的pycharm。不过这里需要提醒大家,如果用的是jupyter
notebook作为试验训练,在实验中会占用很大的内存,jupyter
notebook默认路径在c盘,时间久了,我们的c盘会内存爆满,希望我们将其默认路径修改为其他的路径,网上有很多的修改方式,这里限于篇幅就不做说明了。这里需要给大家简要说明:paddlepaddle是百度
AI Studio的一个开源框架,类似于我们以前接触到的tensorflow、keras、caffe、pytorch等深度学习的框架。

4 环境搭配

首先在百度搜索paddle,选择你对应的系统(Windows、macOs、Ubuntu、Centos),然后选择你的安装方式(pip、conda、docker、源码编译),最后选择python的版本(Python2、python3),但是一般选择python3。

左后先则版本(GPU、CPU),但是后期我们用到大量的数据集,因此,我们需要下载GPU版本。,然后将该命令复制到cmd终端,点击安装,这里用到了百度的镜像,可以加快下载安装的速度。

python -m pip install paddlepaddle-gpu==1.8.3.post107 -i https://mirror.baidu.com/pypi/simple

学长电脑是window10系统,用的是pip安装方式,安装的版本是python3,本人的CUDA版本是CUDA10,因此选择的示意图以及安装命令如图所示。这里前提是我们把GPU安装需要的环境配好,网上有很多相关的

在这里插入图片描述

环境配好了,接下来就该项目实现。

5 项目实现

5.1 准备数据

首先我们导入必要的第三方库。

import os
import time
import random
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from multiprocessing import cpu_count
from paddle.fluid.dygraph import Pool2D,Conv2D
from paddle.fluid.dygraph import Linear

该数据集是学长自己收集标注的数据集(目前较小):包含0-9共就种数字手势,共2073张手势图片。

图片一共有3100100张,格式均为RGB格式文件。在本次实验中,我们选择其中的10%作为测试集,90%作为训练集。通过遍历图片,根据文件夹名称,生成label。

我按照1:9比例划分测试集和训练集,生成train_list 和 test_list,具体实现如下:

data_path = '/home/aistudio/data/data23668/Dataset' # 这里填写自己的数据集的路径,windows的默认路径是\,要将其路径改为/。
character_folders = os.listdir(data_path)
print(character_folders)
if (os.path.exists('./train_data.list')):
    os.remove('./train_data.list')
if (os.path.exists('./test_data.list')):
    os.remove('./test_data.list')
for character_folder in character_folders:

    with open('./train_data.list', 'a') as f_train:
        with open('./test_data.list', 'a') as f_test:
            if character_folder == '.DS_Store':
                continue
            character_imgs = os.listdir(os.path.join(data_path, character_folder))
            count = 0
            for img in character_imgs:
                if img == '.DS_Store':
                    continue
                if count % 10 == 0:
                    f_test.write(os.path.join(data_path, character_folder, img) + '\t' + character_folder + '\n')
                else:
                    f_train.write(os.path.join(data_path, character_folder, img) + '\t' + character_folder + '\n')
                count += 1
print('列表已生成')

其效果图如图所示:

在这里插入图片描述

这里需要简单的处理图片。需要说明一些函数:

  • data_mapper(): 读取图片,对图片进行归一化处理,返回图片和 标签。
  • data_reader(): 按照train_list和test_list批量化读取图片。
  • train_reader(): 用于训练的数据提供器,乱序、按批次提供数据
  • test_reader():用于测试的数据提供器

具体的实现如下:

def data_mapper(sample):
    img, label = sample
    img = Image.open(img)
    img = img.resize((32, 32), Image.ANTIALIAS)
    img = np.array(img).astype('float32')
    img = img.transpose((2, 0, 1))
    img = img / 255.0
    return img, label
def data_reader(data_list_path):
    def reader():
        with open(data_list_path, 'r') as f:
            lines = f.readlines()
            for line in lines:
                img, label = line.split('\t')
                yield img, int(label)
    return paddle.reader.xmap_readers(data_mapper, reader, cpu_count(), 512)

5.2 构建网络

在深度学习中有一个关键的环节就是参数的配置,这些参数设置的恰当程度直接影响这我们的模型训练的效果。

因此,也有特别的一个岗位就叫调参岗,专门用来调参的,这里是通过自己积累的经验来调参数,没有一定的理论支撑,因此,这一块是最耗时间的,当然也是深度学习的瓶颈。

接下来进行参数的设置。

train_parameters = {
    "epoch": 1,                              #训练轮数
    "batch_size": 16,                        #批次大小
    "lr":0.002,                              #学习率
    "skip_steps":10,                         #每10个批次输出一次结果
    "save_steps": 30,                        #每10个批次保存一次结果
    "checkpoints":"data/"
}

train_reader = paddle.batch(reader=paddle.reader.shuffle(reader=data_reader('./train_data.list'), buf_size=256),
                            batch_size=32)
test_reader = paddle.batch(reader=data_reader('./test_data.list'), batch_size=32)

前面也提到深度神经网络(Deep Neural Networks, 简称DNN)是深度学习的基础。DNN网络图如图所示:

在这里插入图片描述

首先定义一个神经网络,具体如下

class MyLeNet(fluid.dygraph.Layer):
    def __init__(self):
        super(MyLeNet, self).__init__()
        self.c1 = Conv2D(3, 6, 5, 1)
        self.s2 = Pool2D(pool_size=2, pool_type='max', pool_stride=2)
        self.c3 = Conv2D(6, 16, 5, 1)
        self.s4 = Pool2D(pool_size=2, pool_type='max', pool_stride=2)
        self.c5 = Conv2D(16, 120, 5, 1)
        self.f6 = Linear(120, 84, act='relu')
        self.f7 = Linear(84, 10, act='softmax')
    def forward(self, input):
        # print(input.shape) 
        x = self.c1(input)
        # print(x.shape)
        x = self.s2(x)
        # print(x.shape)
        x = self.c3(x)
        # print(x.shape)
        x = self.s4(x)
        # print(x.shape)
        x = self.c5(x)
        # print(x.shape)
        x = fluid.layers.reshape(x, shape=[-1, 120])
        # print(x.shape)
        x = self.f6(x)
        y = self.f7(x)
        return y

这里需要说明的是,在forward方法中,我们在每一步都给出了打印的print()函数,就是为了方便大家如果不理解其中的步骤,可以在实验中进行打印,通过结果来帮助我们进一步理解DNN的每一步网络构成。

5.3 开始训练

接下来就是训练网络。

为了方便我观察实验中训练的结果,学长引入了matplotlib第三方库,直观的通过图来观察我们的训练结果,具体训练网络代码实现如下:

import matplotlib.pyplot as plt
Iter=0
Iters=[]
all_train_loss=[]
all_train_accs=[]
def draw_train_process(iters,train_loss,train_accs):
    title='training loss/training accs'
    plt.title(title,fontsize=24)
    plt.xlabel('iter',fontsize=14)
    plt.ylabel('loss/acc',fontsize=14)
    plt.plot(iters,train_loss,color='red',label='training loss')
    plt.plot(iters,train_accs,color='green',label='training accs')
    plt.legend()
    plt.grid()
    plt.show()

with fluid.dygraph.guard():
    model = MyLeNet()  # 模型实例化
    model.train()  # 训练模式
    opt = fluid.optimizer.SGDOptimizer(learning_rate=0.01,
                                       parameter_list=model.parameters())  # 优化器选用SGD随机梯度下降,学习率为0.001.
    epochs_num = 250  # 迭代次数
    for pass_num in range(epochs_num):
        for batch_id, data in enumerate(train_reader()):
            images = np.array([x[0].reshape(3, 32, 32) for x in data], np.float32)
            labels = np.array([x[1] for x in data]).astype('int64')
            labels = labels[:, np.newaxis]
            # print(images.shape)
            image = fluid.dygraph.to_variable(images)
            label = fluid.dygraph.to_variable(labels)
            predict = model(image)  # 预测
            # print(predict)
            loss = fluid.layers.cross_entropy(predict, label)
            avg_loss = fluid.layers.mean(loss)  # 获取loss值
            acc = fluid.layers.accuracy(predict, label)  # 计算精度
            Iter += 32
            Iters.append(Iter)
            all_train_loss.append(loss.numpy()[0])
            all_train_accs.append(acc.numpy()[0])
            if batch_id != 0 and batch_id % 50 == 0:
                print(
                    "train_pass:{},batch_id:{},train_loss:{},train_acc:{}".format(pass_num, batch_id, avg_loss.numpy(),                                                                                acc.numpy()))
            avg_loss.backward()
            opt.minimize(avg_loss)
            model.clear_gradients()
    fluid.save_dygraph(model.state_dict(), 'MyLeNet')  # 保存模型
draw_train_process(Iters, all_train_loss, all_train_accs)

训练过程以及结果如下:

在这里插入图片描述

前面提到强烈建议大家安装gpu版的paddle框架,因为就是在训练过程中,paddle框架会利用英伟达的GP加速,训练的速度会很快的,而CPU则特别的慢。因此,CPU的paddle框架只是在学习的时候还可以,一旦进行训练,根本不行。

可能GPU需要几秒的训练在CPU可能需要十几分钟甚至高达半个小时。其实不只是paddlepaddle框架建议大家安装GPU版本,其他的类似tensorflow、keras、caffe等框架也是建议大家按安装GPU版本。不过安装起来比较麻烦,还需要大家认真安装。

with fluid.dygraph.guard():
    accs = []
    model_dict, _ = fluid.load_dygraph('MyLeNet')
    model = MyLeNet()
    model.load_dict(model_dict)  # 加载模型参数
    model.eval()  # 训练模式
    for batch_id, data in enumerate(test_reader()):  # 测试集
        images = np.array([x[0].reshape(3, 32, 32) for x in data], np.float32)
        labels = np.array([x[1] for x in data]).astype('int64')
        labels = labels[:, np.newaxis]
        image = fluid.dygraph.to_variable(images)
        label = fluid.dygraph.to_variable(labels)
        predict = model(image)
        acc = fluid.layers.accuracy(predict, label)
        accs.append(acc.numpy()[0])
        avg_acc = np.mean(accs)
    print(avg_acc)

5.4 模型评估

配置好了网络,并且进行了一定的训练,接下来就是对我们训练的模型进行评估,具体实现如下:

在这里插入图片描述

结果还可以,这里说明的是,刚开始我们的模型训练评估不可能这么好,可能存在过拟合或者欠拟合的问题,不过更常见的是过拟合,这就需要我们调整我们的epoch、batchsize、激活函数的选择以及优化器、学习率等各种参数,通过不断的调试、训练最好可以得到不错的结果,但是,如果还要更好的模型效果,其实可以将DNN换为更为合适的CNN神经网络模型,效果就会好很多,关于CNN的相关知识以及实验,我们下篇文章在为大家介绍。最后就是我们的模型的预测。

6 识别效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/174231.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于C#实现AC自动机算法

我要检查一篇文章中是否有某些敏感词,这其实就是多模式匹配的问题。当然你也可以用 KMP 算法求出,那么它的时间复杂度为 O(c*(mn)),c:为模式串的个数。m:为模式串的长度,n:为正文的长度,那么这个复杂度就不…

Macs Fan Control Pro:掌握您的Mac风扇,提升散热效率

在Mac的世界里,每一个细节都显得格外重要。而其中,风扇的控制与调节则显得尤为重要。然而,原生的Mac系统并不提供直观的风扇控制工具,这使得许多Mac用户在处理高负荷任务时,风扇无法有效地进行散热,导致机器…

TensorFlow实战教程(十八)-Keras搭建卷积神经网络及CNN原理详解

从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章详细讲解了Keras实现分类学习,以MNIST数字图片为例进行讲解。本篇文章详细讲解了卷积神经网络CNN原理,并通过Keras编写CNN实现了MNIST分类学习案例。基础性文章,希望对您有所帮助! 一…

体感互动游戏VR游戏AR体感游戏软件开发

随着科技的不断发展,体感互动游戏正逐渐成为游戏行业的一个重要趋势。这类游戏通过利用传感器、摄像头和运动控制器等技术,使玩家能够通过身体动作与游戏进行实时互动,极大地提升了娱乐体验。 1. 游戏设计与互动元素 体感互动游戏的核心在于…

使用kafka_exporter监控Kafka

prometheus 监控 kafka 常见的有两种开源方案,一种是传统的部署 exporter 的方式,一种是通过 jmx 配置监控, 项目地址: kafka_exporter:https://github.com/danielqsj/kafka_exporterjmx_exporter:https://github.com/prometheus/jmx_exporter本文将采用kafka_exporter方…

使用Navicat将SQL server数据库导入mysql数据库

使用Navicat将SQL server数据库导入mysql数据库 1、使用Navicat Premium打开MySql数据库,然后新建一个数据库名(该数据库名称为需要从SqlServer数据库导过来的名称,mysql只有小写,不影响) 比如需要将SqlServer数据库…

NGINX缓存详解之服务端缓存

服务端缓存 proxy cache属于服务端缓存,主要实现 nginx 服务器对客户端数据请求的快速响应。 nginx 服务器在接收到被代理服务器的响应数据之后,一方面将数据传递给客户端,另一方面根据proxy cache的配置将这些数据缓存到本地硬盘上。 当客户端再次访问相同的数据时,nginx…

谈谈你对mvc和mvvm的理解

MVC和MVVM是软件开发中两种常见的架构模式,各自有不同的优缺点。 MVC(Model-View-Controller)是一种经典的架构模式,将应用程序分为三个部分:模型(Model)、视图(View)和…

中国城镇化时空分异及影响因素数据集(2010-2020)

基于《中国统计年鉴》、各省份统计年鉴及EPS全球统计数据库等相关统计数据,从人居生活、人文环境、人城关系等维度界定了城镇化内涵框架与指标体系,利用改进的熵值法计算综合评价指数,并运用泰尔指数、方差分解及地理探测器等方法&#xff0c…

ventoy安装操作系统

下载ventoy https://github.com/ventoy/Ventoy/releases/download/v1.0.96/ventoy-1.0.96-windows.zip 解压后执行 Ventoy2Disk 2、安装后将ISO放入U盘大的分区,通过U盘启动就可以识别到ISO镜像开始装系统

2021秋招-总目录

2021秋招-目录 知识点总结 预训练语言模型: Bert家族 1.1 BERT、attention、transformer理解部分 B站讲解–强烈推荐可视化推倒结合代码理解代码部分常见面试考点以及问题: word2vec 、 fasttext 、elmo;BN 、LN、CN、WNNLP中的loss与评价总结 4.1 loss_function&#xff1…

【Java】异常处理及其语法、抛出异常、自定义异常(完结)

🌺个人主页:Dawn黎明开始 🎀系列专栏:Java ⭐每日一句:道阻且长,行则将至 📢欢迎大家:关注🔍点赞👍评论📝收藏⭐️ 文章目录 一.🔐异…

centos7卸载mongodb数据重新安装时无法安装的问题

如果卸载不干净直接用 sudo find / -name mongo 查询所有关于mongo的文件,然后一个个去删除。 当然最好的办法还是去看日志信息。 直接去查看日志信息 sudo cat /var/log/mongodb/mongod.log 根据提示信息说这个没有权限操作 直接删除即可,都是之前…

【Web】Ctfshow XSS刷题记录

目录 反射型XSS ①web316 ②web317-319 ③web320-322 ④web323-326 存储型XSS ①web327 ②web328 ③web329 ④web330 ⑤web331 ⑥web332-333 反射型XSS ①web316 直接输入<script>alert(1)</script>,能弹窗。xss题目一般会有个bot&#xff0c;可以触…

django+drf+vue 简单系统搭建 (4) 用户权限

权限控制是web中的重要组成部分。与以往的博客系统不同&#xff0c;本次工具页面仅支持注册用户。 每个注册用户都能访问到工具页面&#xff0c;并且提交自己的task来选择具体的工具来处理自己提交的文件。每个注册用户都只能访问到自己提交的task&#xff0c;而管理员则可以查…

Android DatePicker(日期选择器)、TimePicker(时间选择器)、CalendarView(日历视图)- 简单应用

示意图&#xff1a; layout布局文件&#xff1a;xml <?xml version"1.0" encoding"utf-8"?> <ScrollView xmlns:android"http://schemas.android.com/apk/res/android"xmlns:app"http://schemas.android.com/apk/res-auto"…

vue中原生H5拖拽排序_拖拽图片也是同样的道理

原文地址【vue中原生H5拖拽排序_拖拽图片也是同样的道理】 H5有基于拖拽的事件机制&#xff0c;如果你还不熟悉&#xff0c;请看我之前的文章【拖拽上传】中有介绍。 原生拖拽API实现 由于比较简单直接上代码了&#xff1a; <!DOCTYPE html> <html lang"en&qu…

https和http的区别和优势

大家好&#xff0c;我是咕噜-凯撒&#xff0c;HTTP&#xff08;超文本传输协议&#xff09;和HTTPS&#xff08;安全超文本传输协议&#xff09;是用于在网络上传输数据的协议&#xff0c;HTTPS相比HTTP在数据传输过程中更加安全可靠&#xff0c;适合对数据安全性要求较高的场景…

【冒泡排序设计】

【冒泡排序设计】 思路代码结果 思路 冒泡排序这个算法&#xff0c;对于我这样的初学者来说&#xff0c;也不是很简单&#xff01;&#xff01;&#xff01;&#xff08;没有想象的那么简单&#xff09;&#xff01;  它的核心思想是&#xff1a;两两相邻的元素进行比较&#…

Android HAL学习 及 与BSP的区别

Android HAL学习 及 与BSP的区别 参考链接&#xff1a; 1、https://www.cnblogs.com/looner/articles/11579335.html 2、https://blog.csdn.net/leesan0802/article/details/124087630 3、https://zhuanlan.zhihu.com/p/336531442 在HAL的学习之前&#xff0c;我们来先了解…