基于SVM的车牌识别算法

基于SVM的车牌识别系统(Python代码实现)

车牌识别系统是智能交通系统的重要组成部分,有着广泛的应用。车牌识别系统主要有车牌定位、字符分割和字符识别三部分组成,本文的研究重点是车牌字符识别这部分,本文提出了一种基于OpenCVSVM的车牌识别方法。首先通过Soble边缘检测算法与形态学算法相结合来确定大致的车牌轮廓,结合车牌的外接矩形的面积与长宽比来筛选出符合车牌特征的候选区域,然后使用投影法将车牌中的字符分割出来,最后使用SVM分类器来对分割出的字符进行识别,输出识别结果。经过验证,该车牌识别系统能够适用于比较复杂的环境,识别准确率相对较高。为了提升该系统的可操作性,本文使用PyQt5设计了GUI界面,提升了系统的可操作性,同时使界面更加美观。

一、算法流程

一个完整的车牌号识别系统要完成从图像采集到字符识别输出,过程相当复杂,基本可以分成硬件部分跟软件部分,硬件部分包括系统触发、图像采集,软件部分包括图像预处理车牌定位字符分割字符识别四大部分,一个车牌识别系统的基本结构如图:

在这里插入图片描述

二、图像预处理

获取蓝色和绿色通道:

    hsv = cv2.cvtColor(src, cv2.COLOR_BGR2HSV)  # 将RGB图像转换为HSV图像
    h, s, v = cv2.split(hsv)  # 分离H,S,V
    lower = np.array([100, 90, 40])
    upper = np.array([124, 255, 255])  # 设置阈值
    mask = cv2.inRange(hsv, lower, upper)  # 获取图像蒙版
    img = cv2.bitwise_and(s, s, mask=mask)  # 在图像蒙版上使用“按位与”运算符吗,分离绿色和蓝色通道
    

处理结果:在这里插入图片描述

直方图均衡化:

    img = cv2.equalizeHist(img)  # 直方图均衡化,增强对比度:将已知灰度概率密度分布的图像经过变换,使其称为一个均匀灰度概率密度分布的新图像
    img = cv2.GaussianBlur(img, (3, 3), 0, 0, cv2.BORDER_DEFAULT)  # 高斯滤波

处理结果:
在这里插入图片描述
检测图像中的纹理:

    flipped = cv2.flip(img, 1)  # 图像翻转,1:水平翻转
    sobel1 = cv2.Sobel(img, cv2.CV_8U, 1, 0, ksize=3)  # 图像边缘检测,Sobel算子,对x轴方向求导
    sobel2 = cv2.flip(cv2.Sobel(flipped, cv2.CV_8U, 1, 0, ksize=3), 1)  # 先平滑图像边缘,再翻转
    img = sobel1 / 2 + sobel2 / 2
    img = img.astype('uint8')  # 强制类型转换

处理结果:
在这里插入图片描述
灰度图转为二进制图像:

    th = (np.mean(img) + (np.max(img) - np.mean(img)) * 0.6)
    ret, img = cv2.threshold(img, th, 255, cv2.THRESH_BINARY)  # 简单阈值函数,从灰度图像中获取二进制图像

处理结果:
在这里插入图片描述
形态学闭合操作:

img = close_op(img, 36)

处理结果:
在这里插入图片描述

三、车牌定位

    for contour in contours:
        area = cv2.contourArea(contour)  # 计算图像轮廓面积
        if area < 200 or area > 50000:  # 判断车牌轮廓区域
            continue

        rect = cv2.minAreaRect(contour)  # 求出点集contour的最小矩形面积,返回值rec[0]为矩形的中心点,rec[1]为矩形的长和宽,rec[2]矩形的旋转角度
        if rect[1][0] * rect[1][1] < 666 or area < rect[1][0] * rect[1][1] * 0.6:
            continue

        dy, dx = contour.flatten().reshape(contour.shape[0], -1).T.ptp(1)
        cwb = rect[1][1] / rect[1][0] if rect[1][1] > rect[1][0] else rect[1][0] / rect[1][1]
        if dy < dx or cwb < 2.5 or cwb > 6:
            continue

        if not check_plate(src, rect):
            continue

        plate = extract_plate(src, rect)  # src为原始图像,rect为车牌区域坐标

处理结果:
在这里插入图片描述

四、车牌字符分割

def plate_cut_text(img):
    '''
    车牌字符分割,将分割好的车牌区域进行字符分割
    '''
    sum = np.sum(img, 1)
    limit = np.mean(sum) * 0.2
    bound = []
    start = 0
    for i in range(len(sum) - 1):
        if sum[i] < limit and sum[i + 1] >= limit:
            start = i
        elif sum[i] >= limit and sum[i + 1] < limit:
            bound.append([start, i])
            start = 0
    if start != 0:
        bound.append([start, len(sum - 1)])
    up, down = 0, 0
    for b in bound:
        if b[1] - b[0] > down - up:
            up = b[0]
            down = b[1]

    return img[up: down + 1, :]

五、基于SVM的车牌字符识别

reader = SVM_ocr.Reader()
def plate_recognition(plate):  #字符识别代码
    '''
    车牌识别核心代码,使用SVM对分割的车牌字符进行识别,并将识别结果返回
    '''
    img = cv2.cvtColor(plate, cv2.COLOR_BGR2GRAY)
    th = (np.mean(img) + (np.max(img) - np.mean(img)) * 0.2)
    _, img = cv2.threshold(img, th, 255, cv2.THRESH_BINARY) #阈值函数
    img = plate_cut_text(img)
    display('plate th', img, 360)
    bound = plate_split(img) #调用plate_split函数,对车牌字符进行拆分,返回一个列表,列表每个值记录车牌每个字符起始位置
    print('拆分出来的各个字符起始位置:',bound)
    plate_res = []
    for i, b in enumerate(bound):
        display('character_'+str(i), img[:,b[0]:b[1]], 50)
        if b[1] - b[0] > 5 and b[1] - b[0] < 28: #判断每个分割出来的字符宽度是否正常
            if len(plate_res) == 0:
                ch = reader.recognize_chinese(adjust_vision(img[:, b[0]:b[1]+1]))[0] #识别车牌汉字
            else:
                ch = reader.recognize_alnum(adjust_vision(img[:, b[0]:b[1]+1]))[0] #识别车牌字符
            plate_res.append(ch) #将识别结果添加到变量ch中
    return plate_res #返回车牌识别结果

六、使用Qtdesigner进行UI界面设计

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/174138.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

QT 搭建opencv 环境

1. 准备工具CMake 一、CMake介绍 CMake是一个被广泛使用的、开源免费并且完全跨平台的构建工具&#xff0c;可以用简单的语句来描述所有平台的安装(编译过程)。它能够输出各种各样的makefile或者project文件&#xff0c;能测试编译器所支持的C特性&#xff0c;类似UNIX下的aut…

html手势密码解锁插件(附源码)

文章目录 1.设计来源1.1 界面效果 2.效果和源码2.1 动态效果2.2 源代码 源码下载 作者&#xff1a;xcLeigh 文章地址&#xff1a;https://blog.csdn.net/weixin_43151418/article/details/134534785 html手势密码解锁插件(附源码)&#xff0c;仿手机手势密码&#xff0c;拖动九…

最新绿豆APP源码苹果CMS影视插件版本/原生JAVA源码+反编译开源+免授权

源码简介&#xff1a; 最新绿豆APP源码苹果CMS影视插件版本&#xff0c;它是原生JAVA源码反编译开源免授权&#xff0c;绿豆影视对接苹果CMS&#xff0c;它可以支持多功能自定义DIY页面布局。 1、新版绿豆视频APP视频6.1插件版反编译指南及教程 2、后端插件开源&#xff0c;可…

图形编辑器开发:自定义光标管理

大家好&#xff0c;我是前端西瓜哥。 今天来讲讲如何在图形编辑器中使用自定义光标&#xff0c;并对光标其进行管理。 编辑器 github 地址&#xff1a; https://github.com/F-star/suika 线上体验&#xff1a; https://blog.fstars.wang/app/suika/ 自定义光标的意义是什么&am…

【Docker】从零开始:4.为什么Docker会比VM虚拟机快

【Docker】从零开始&#xff1a;4.为什么Docker会比VM虚拟机快 docker有着比虚拟机更少的抽象层docker利用的是宿主机的内核,而不需要加载操作系统OS内核 docker有着比虚拟机更少的抽象层 由于docker不需要Hypervisor(虚拟机)实现硬件资源虚拟化,运行在docker容器上的程序直接…

关于一些网络的概述

语义分割网络是一种基于深度学习的计算机视觉技术,它能够将图像中的每个像素分配给特定的类别,从而实现对图像中不同对象的精确识别和定位。近年来,随着深度学习技术的不断发展,语义分割网络在各个领域都取得了显著的进展。 早期的语义分割网络主要采用全卷积神经网络(FC…

时序预测 | MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost时间序列预测 目录 时序预测 | MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 x 基本介绍 1.Matlab实现LSTM-Adaboost时间序列预测…

数据库基础入门 — SQL

我是南城余&#xff01;阿里云开发者平台专家博士证书获得者&#xff01; 欢迎关注我的博客&#xff01;一同成长&#xff01; 一名从事运维开发的worker&#xff0c;记录分享学习。 专注于AI&#xff0c;运维开发&#xff0c;windows Linux 系统领域的分享&#xff01; 本…

《多GPU大模型训练与微调手册》

全参数微调 Lora微调 PTuning微调 多GPU微调预备知识 1. 参数数据类型 torch.dtype 1.1 半精度 half-precision torch.float16&#xff1a;fp16 就是 float16&#xff0c;1个 sign&#xff08;符号位&#xff09;&#xff0c;5个 exponent bits(指数位)&#xff0c;10个 ma…

数学几百年重大错误:将两异函数误为同一函数

黄小宁 因各实数都可是数轴上点的坐标所以数集A可形象化为数轴上的点集A&#xff0c;从而使x∈R变换为实数yxδ的几何意义可是&#xff1a;一维空间“管道”g内R轴上的质点x∈R(x是点的坐标)运动到新的位置yxδ还在管道g内&#xff08;设各点只作位置改变而没别的改变即变位前…

Ubuntu下载离线安装包

旧版Ubuntu下载地址 https://old-releases.ubuntu.com/releases/ 下载离线包 sudo apt-get --download-only -odir::cache/ncayu install net-tools下载snmp离线安装包 sudo apt-get --download-only -odir::cache/root/snmp install snmp snmpd snmp-mibs-downloadersudo a…

Linux下安装Foldseek并从蛋白质的PDB结构中获取 3Di Token 和 3Di Embedding

0. 说明&#xff1a; Foldseek 是由韩国国立首尔大学 (Seoul National University) 的 Martin Steinegger (MMseqs2 和 Linclust 的作者) 开发的一款用于快速地从大型蛋白质结构数据库中检索相似结构蛋白质的工具&#xff0c;可以用于计算两个蛋白之间的结构相似性&#xff0c…

TensorFlow实战教程(十九)-Keras搭建循环神经网络分类案例及RNN原理详解

从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章分享了卷积神经网络CNN原理,并通过Keras编写CNN实现了MNIST分类学习案例。这篇文章将详细讲解循环神经网络RNN的原理知识,并采用Keras实现手写数字识别的RNN分类案例及可视化呈现。基础性文…

多元函数奇偶性

多元函数奇偶性 多元函数的定义域 定义域根据函数的变量数不同,有不同的形式 一元函数 y f ( x ) yf(x) yf(x),定义域可以是数集二元函数 z f ( x , y ) zf(x,y) zf(x,y),定义域可以是一平面区域,是平面点集三元函数 v f ( x , y , z ) vf(x,y,z) vf(x,y,z),定义域是一块空…

基于骑手优化算法优化概率神经网络PNN的分类预测 - 附代码

基于骑手优化算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于骑手优化算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于骑手优化优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神…

spark内置数据类型

在用scala编写spark的时候&#xff0c;假如我现在需要将我spark读的数据源的字段&#xff0c;做一个类型转换&#xff0c;因 为需求中要拼接出sql的create table语句&#xff0c;需要每个字段的sql中的类型&#xff0c;那么就需要去和sparksql 中的内置数据类型去比对。 写s…

光伏、储能双层优化配置接入配电网研究(附带Matlab代码)

由于能源的日益匮乏&#xff0c;电力需求的不断增长等&#xff0c;配电网中分布式能源渗透率不断提高&#xff0c;且逐渐向主动配电网方向发展。此外&#xff0c;需求响应(demand response&#xff0c;DR)的加入对配电网的规划运行也带来了新的因素。因此&#xff0c;如何综合考…

Linux docker安装RStudio Server结合内网穿透实现公网访问内网服务

&#x1f4f7; 江池俊&#xff1a; 个人主页 &#x1f525;个人专栏&#xff1a; ✅数据结构探索 ✅cpolar &#x1f305; 有航道的人&#xff0c;再渺小也不会迷途。 文章目录 前言1. 安装RStudio Server2. 本地访问3. Linux 安装cpolar4. 配置RStudio server公网访问地址5…

flutter创建不同样式的按钮,背景色,边框,圆角,圆形,大小都可以设置

在ui设计中&#xff0c;可能按钮会有不同的样式需要你来写出来&#xff0c;所以按钮的不同样式&#xff0c;应该是最基础的功能&#xff0c;在这里我们赶紧学起来吧&#xff0c;web端可能展示有问题&#xff0c;需要优化&#xff0c;但是基本样式还是出来了 我是将所有的按钮放…