时序预测 | MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost时间序列预测

目录

    • 时序预测 | MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

x
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现LSTM-Adaboost时间序列预测,长短期记忆神经网络结合AdaBoost时间序列预测(风电功率预测);
2.运行环境为Matlab2020b;
3.data为数据集,excel数据,单变量时间序列数据,LSTM_AdaboostTS.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、MAPE、RMSE多指标评价;

模型描述

LSTM-AdaBoost是一种将LSTM和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱学习器组合起来形成一个强学习器,其中每个学习器都是针对不同数据集和特征表示训练的。LSTM-AdaBoost算法的基本思想是将LSTM作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个LSTM模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

程序设计

  • 完整源码和数据获取方式:私信博主回复MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost时间序列预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));

disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;

disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/174125.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据库基础入门 — SQL

我是南城余!阿里云开发者平台专家博士证书获得者! 欢迎关注我的博客!一同成长! 一名从事运维开发的worker,记录分享学习。 专注于AI,运维开发,windows Linux 系统领域的分享! 本…

《多GPU大模型训练与微调手册》

全参数微调 Lora微调 PTuning微调 多GPU微调预备知识 1. 参数数据类型 torch.dtype 1.1 半精度 half-precision torch.float16:fp16 就是 float16,1个 sign(符号位),5个 exponent bits(指数位),10个 ma…

数学几百年重大错误:将两异函数误为同一函数

黄小宁 因各实数都可是数轴上点的坐标所以数集A可形象化为数轴上的点集A,从而使x∈R变换为实数yxδ的几何意义可是:一维空间“管道”g内R轴上的质点x∈R(x是点的坐标)运动到新的位置yxδ还在管道g内(设各点只作位置改变而没别的改变即变位前…

Ubuntu下载离线安装包

旧版Ubuntu下载地址 https://old-releases.ubuntu.com/releases/ 下载离线包 sudo apt-get --download-only -odir::cache/ncayu install net-tools下载snmp离线安装包 sudo apt-get --download-only -odir::cache/root/snmp install snmp snmpd snmp-mibs-downloadersudo a…

Linux下安装Foldseek并从蛋白质的PDB结构中获取 3Di Token 和 3Di Embedding

0. 说明: Foldseek 是由韩国国立首尔大学 (Seoul National University) 的 Martin Steinegger (MMseqs2 和 Linclust 的作者) 开发的一款用于快速地从大型蛋白质结构数据库中检索相似结构蛋白质的工具,可以用于计算两个蛋白之间的结构相似性&#xff0c…

TensorFlow实战教程(十九)-Keras搭建循环神经网络分类案例及RNN原理详解

从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章分享了卷积神经网络CNN原理,并通过Keras编写CNN实现了MNIST分类学习案例。这篇文章将详细讲解循环神经网络RNN的原理知识,并采用Keras实现手写数字识别的RNN分类案例及可视化呈现。基础性文…

多元函数奇偶性

多元函数奇偶性 多元函数的定义域 定义域根据函数的变量数不同,有不同的形式 一元函数 y f ( x ) yf(x) yf(x),定义域可以是数集二元函数 z f ( x , y ) zf(x,y) zf(x,y),定义域可以是一平面区域,是平面点集三元函数 v f ( x , y , z ) vf(x,y,z) vf(x,y,z),定义域是一块空…

基于骑手优化算法优化概率神经网络PNN的分类预测 - 附代码

基于骑手优化算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于骑手优化算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于骑手优化优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

spark内置数据类型

在用scala编写spark的时候,假如我现在需要将我spark读的数据源的字段,做一个类型转换,因 为需求中要拼接出sql的create table语句,需要每个字段的sql中的类型,那么就需要去和sparksql 中的内置数据类型去比对。 写s…

光伏、储能双层优化配置接入配电网研究(附带Matlab代码)

由于能源的日益匮乏,电力需求的不断增长等,配电网中分布式能源渗透率不断提高,且逐渐向主动配电网方向发展。此外,需求响应(demand response,DR)的加入对配电网的规划运行也带来了新的因素。因此,如何综合考…

Linux docker安装RStudio Server结合内网穿透实现公网访问内网服务

📷 江池俊: 个人主页 🔥个人专栏: ✅数据结构探索 ✅cpolar 🌅 有航道的人,再渺小也不会迷途。 文章目录 前言1. 安装RStudio Server2. 本地访问3. Linux 安装cpolar4. 配置RStudio server公网访问地址5…

flutter创建不同样式的按钮,背景色,边框,圆角,圆形,大小都可以设置

在ui设计中,可能按钮会有不同的样式需要你来写出来,所以按钮的不同样式,应该是最基础的功能,在这里我们赶紧学起来吧,web端可能展示有问题,需要优化,但是基本样式还是出来了 我是将所有的按钮放…

洛谷 P3252 [JLOI2012] 树

读题就读趋势了&#xff0c;还以为是每个深度都可以选一个&#xff0c;然后深度升序就可以了&#xff0c;以为是个按深度的01背包。 但是前面还说了是一条路径&#xff0c;路径是不能断开的。那就从每个点开始爆搜一次就好了。 看了一下范围n<1e5&#xff0c;n^2爆搜理论上…

智能座舱架构与芯片- (13) 软件篇 下

四、面向服务的智能座舱软件架构 4.1 面向信号的软件架构 随着汽车电子电气架构向中央计算-域控制器的方向演进&#xff0c;甚至向车云一体化的方向迈进&#xff0c;适用于汽车的软件平台也需要进行相应的进化。 在传统的观念中&#xff0c;座舱域即娱乐域&#xff0c;座舱软…

2023.11.22使用flask做一个简单的图片浏览器

2023.11.22使用flask做一个简单的图片浏览器 功能&#xff1a; 实现图片浏览&#xff08;翻页&#xff09;功能 程序页面&#xff1a; 程序架构&#xff1a; 注意&#xff1a;在flask中常会使用src“{{ url_for(‘static’, filename‘images/’ image) }}”&#xff0c…

4D毫米波雷达和3D雷达、激光雷达全面对比

众所周知&#xff0c;传统3D毫米波雷达存在如下性能缺陷&#xff1a; 1&#xff09;静止目标和地物杂波混在一起&#xff0c;难以区分&#xff1b; 2) 横穿车辆和行人多普勒为零或很低&#xff0c;难以检测&#xff1b; 3) 高处物体和地面目标不能区分&#xff0c;容易造成误刹…

基于SSM的进销存管理系统设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

ArcGIS如何处理并加载Excel中坐标数据?

做GIS行业的各位肯定免不了跟数据打交道&#xff0c;其中数据的处理说复杂也复杂&#xff0c;因为我们要花时间去做数据的转换及调整工作&#xff0c;那说简单也简单&#xff0c;因为我们有很多的工具可以使用&#xff0c;那么今天我就给大家带来处理Excel中的GIS数据中的其中一…

Windows to Go U盘系统制作(未测完成)

三、Windows U盘系统制作 1、下载windows镜像&#xff0c;并通过Windows To Go方式制作&#xff0c;具体选项参考下面截图 2、选择Windows版本 3、配置Windows 体验相关参数

基于SSM的网络财务管理系统设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…