基于骑手优化算法优化概率神经网络PNN的分类预测 - 附代码

基于骑手优化算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于骑手优化算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于骑手优化优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用骑手优化算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于骑手优化优化的PNN网络

骑手优化算法原理请参考:https://blog.csdn.net/u011835903/article/details/122558027

利用骑手优化算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

骑手优化参数设置如下:

%% 骑手优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,骑手优化-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/174115.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

spark内置数据类型

在用scala编写spark的时候,假如我现在需要将我spark读的数据源的字段,做一个类型转换,因 为需求中要拼接出sql的create table语句,需要每个字段的sql中的类型,那么就需要去和sparksql 中的内置数据类型去比对。 写s…

光伏、储能双层优化配置接入配电网研究(附带Matlab代码)

由于能源的日益匮乏,电力需求的不断增长等,配电网中分布式能源渗透率不断提高,且逐渐向主动配电网方向发展。此外,需求响应(demand response,DR)的加入对配电网的规划运行也带来了新的因素。因此,如何综合考…

Linux docker安装RStudio Server结合内网穿透实现公网访问内网服务

📷 江池俊: 个人主页 🔥个人专栏: ✅数据结构探索 ✅cpolar 🌅 有航道的人,再渺小也不会迷途。 文章目录 前言1. 安装RStudio Server2. 本地访问3. Linux 安装cpolar4. 配置RStudio server公网访问地址5…

flutter创建不同样式的按钮,背景色,边框,圆角,圆形,大小都可以设置

在ui设计中,可能按钮会有不同的样式需要你来写出来,所以按钮的不同样式,应该是最基础的功能,在这里我们赶紧学起来吧,web端可能展示有问题,需要优化,但是基本样式还是出来了 我是将所有的按钮放…

洛谷 P3252 [JLOI2012] 树

读题就读趋势了&#xff0c;还以为是每个深度都可以选一个&#xff0c;然后深度升序就可以了&#xff0c;以为是个按深度的01背包。 但是前面还说了是一条路径&#xff0c;路径是不能断开的。那就从每个点开始爆搜一次就好了。 看了一下范围n<1e5&#xff0c;n^2爆搜理论上…

智能座舱架构与芯片- (13) 软件篇 下

四、面向服务的智能座舱软件架构 4.1 面向信号的软件架构 随着汽车电子电气架构向中央计算-域控制器的方向演进&#xff0c;甚至向车云一体化的方向迈进&#xff0c;适用于汽车的软件平台也需要进行相应的进化。 在传统的观念中&#xff0c;座舱域即娱乐域&#xff0c;座舱软…

2023.11.22使用flask做一个简单的图片浏览器

2023.11.22使用flask做一个简单的图片浏览器 功能&#xff1a; 实现图片浏览&#xff08;翻页&#xff09;功能 程序页面&#xff1a; 程序架构&#xff1a; 注意&#xff1a;在flask中常会使用src“{{ url_for(‘static’, filename‘images/’ image) }}”&#xff0c…

4D毫米波雷达和3D雷达、激光雷达全面对比

众所周知&#xff0c;传统3D毫米波雷达存在如下性能缺陷&#xff1a; 1&#xff09;静止目标和地物杂波混在一起&#xff0c;难以区分&#xff1b; 2) 横穿车辆和行人多普勒为零或很低&#xff0c;难以检测&#xff1b; 3) 高处物体和地面目标不能区分&#xff0c;容易造成误刹…

基于SSM的进销存管理系统设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

ArcGIS如何处理并加载Excel中坐标数据?

做GIS行业的各位肯定免不了跟数据打交道&#xff0c;其中数据的处理说复杂也复杂&#xff0c;因为我们要花时间去做数据的转换及调整工作&#xff0c;那说简单也简单&#xff0c;因为我们有很多的工具可以使用&#xff0c;那么今天我就给大家带来处理Excel中的GIS数据中的其中一…

Windows to Go U盘系统制作(未测完成)

三、Windows U盘系统制作 1、下载windows镜像&#xff0c;并通过Windows To Go方式制作&#xff0c;具体选项参考下面截图 2、选择Windows版本 3、配置Windows 体验相关参数

基于SSM的网络财务管理系统设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

ArkTS基础知识

ArkTS基础知识 ArkUI开发框架 ArkTS声明式开发范式 装饰器&#xff1a; 用来装饰类&#xff0c;结构体&#xff0c;方法及变量。如&#xff1a; Entry&#xff1a;入口组件 Component &#xff1a;表示自定义组件 State 都是装饰器&#xff1a;组件中的状态变量&#xff0c;该…

[机缘参悟-119] :一个IT人的反思:反者道之动;弱者,道之用 VS 恒者恒强,弱者恒弱的马太效应

目录 前言&#xff1a; 一、道家的核心思想 二、恒者恒强&#xff0c;弱者恒弱的马太效应 三、马太效应与道家思想的统一 3.1 大多数的理解 3.2 个人的理解 四、矛盾的对立统一 前言&#xff1a; 马太效应和强弱互转的道家思想&#xff0c;都反应了自然规律和社会规律&…

【JavaEE】Spring的创建和使用(保姆级手把手图解)

一、创建一个Spring项目 1.1 创建一个Maven项目 1.2 添加 Spring 框架支持 在pom.xml中添加 <dependencies><dependency><groupId>org.springframework</groupId><artifactId>spring-context</artifactId><version>5.2.3.RELEASE&…

艺术作品3D虚拟云展厅能让客户远程身临其境地欣赏美

艺术品由于货物昂贵、易碎且保存难度大&#xff0c;因此在艺术品售卖中极易受时空限制&#xff0c;艺术品三维云展平台在线制作是基于web端将艺术品的图文、模型及视频等资料进行上传搭配&#xff0c;构建一个线上艺术品3D虚拟展厅&#xff0c;为艺术家和观众提供了全新的展示和…

SpringBoot——》配置logback日志文件

推荐链接&#xff1a; 总结——》【Java】 总结——》【Mysql】 总结——》【Redis】 总结——》【Kafka】 总结——》【Spring】 总结——》【SpringBoot】 总结——》【MyBatis、MyBatis-Plus】 总结——》【Linux】 总结——》【MongoD…

LangChain 6根据图片生成推广文案HuggingFace中的image-caption模型

根据图片生成推广文案&#xff0c; 用的HuggingFace中的image-caption模型 LangChain 实现给动物取名字&#xff0c;LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄LangChain 4用向量数…

IDEA JRebel安装使用教程

1、下载插件 版本列表&#xff1a;https://plugins.jetbrains.com/plugin/4441-jrebel-and-xrebel/versions 下载&#xff1a;JRebel and XRebel 2022.4.1 这里下载2022.4.1版本&#xff0c;因为后续新版本获取凭证会比较麻烦。下载完成会是一个压缩包。 2、安装 选择第一步…

ssm租房小程序-计算机毕设 附源码42196

SSM租房小程序 摘 要 本论文主要论述了如何使用SSM框架开发一个租房小程序&#xff0c;本系统将严格按照软件开发流程进行各个阶段的工作&#xff0c;采用B/S架构JAVA技术&#xff0c;面向对象编程思想进行项目开发。在引言中&#xff0c;作者将论述租房小程序的当前背景以及系…