JMM并发三大特性

并发和并行

目标都是最大化CPU的使用率
并行(parallel):指在同一时刻,有多条指令在多个处理器上同时执行。所以无论从微观还是从宏观来看,二者都是一起执行的。

并发(concurrency):指在同一时刻只能有一条指令执行,但多个进程指令被快速的轮换执行,使得在宏观上具有多个进程同时执行的效果,但在微观上并不是同时执行的,只是把时间分成若干段,使多个进程快速交替的执行。


并行在多处理器系统中存在,而并发可以在单处理器和多处理器系统中都存在,并发能够在单处理器系统中存在是因为并发是并行的假象,并行要求程序能够同时执行多个操作,而并发只是要求程序假装同时执行多个操作(每个小时间片执行一个操作,多个操作快速切换执行)

并发三大特性

并发编程Bug的源头:可见性、原子性和有序性问题

可见性

当一个线程修改了共享变量的值,其他线程能够看到修改的值。Java 内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值这种依赖主内存作为传递媒介的方法来实现可见性的。
如何保证可见性
通过 volatile 关键字保证可见性。
通过 内存屏障保证可见性。
通过 synchronized 关键字保证可见性。
通过 Lock保证可见性。
通过 final 关键字保证可见性

有序性

即程序执行的顺序按照代码的先后顺序执行。JVM 存在指令重排,所以存在有序性问题。
如何保证有序性
通过 volatile 关键字保证可见性。
通过 内存屏障保证可见性。
通过 synchronized关键字保证有序性。
通过 Lock保证有序性。

原子性

一个或多个操作,要么全部执行且在执行过程中不被任何因素打断,要么全部不执行。在 Java 中,对基本数据类型的变量的读取和赋值操作是原子性操作(64位处理器)。不采取任何的原子性保障措施的自增操作并不是原子性的。
如何保证原子性
通过 synchronized 关键字保证原子性。
通过 Lock保证原子性。
通过 CAS保证原子性。
思考:在 32 位的机器上对 long 型变量进行加减操作是否存在并发隐患?
https://docs.oracle.com/javase/specs/jls/se8/html/jls-17.html#jls-17.7

可见性问题深入分析

我们通过下面的Java小程序来分析Java的多线程可见性的问题

/**
 *
 * -XX:+UnlockDiagnosticVMOptions -XX:+PrintAssembly -Xcomp
 */
public class VisibilityTest {

    private boolean flag = true;

    public void refresh() {
        flag = false;
        System.out.println(Thread.currentThread().getName() + "修改flag");
    }

    public void load() {
        System.out.println(Thread.currentThread().getName() + "开始执行.....");
        int i = 0;
        while (flag) {
            i++;
            //TODO  业务逻辑

        }
        System.out.println(Thread.currentThread().getName() + "跳出循环: i=" + i);
    }

    public static void main(String[] args) throws InterruptedException {
        VisibilityTest test = new VisibilityTest();

        // 线程threadA模拟数据加载场景
        Thread threadA = new Thread(() -> test.load(), "threadA");
        threadA.start();

        // 让threadA执行一会儿
        Thread.sleep(1000);
        // 线程threadB通过flag控制threadA的执行时间
        Thread threadB = new Thread(() -> test.refresh(), "threadB");
        threadB.start();

    }


    public static void shortWait(long interval) {
        long start = System.nanoTime();
        long end;
        do {
            end = System.nanoTime();
        } while (start + interval >= end);
    }

思考:上面例子中为什么多线程对共享变量的操作存在可见性问题?

Java内存模型(JMM)

JMM定义

Java虚拟机规范中定义了Java内存模型(Java Memory Model,JMM),用于屏蔽掉各种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的并发效果,JMM规范了Java虚拟机与计算机内存是如何协同工作的:规定了一个线程如何和何时可以看到由其他线程修改过后的共享变量的值,以及在必须时如何同步的访问共享变量。JMM描述的是一种抽象的概念,一组规则,通过这组规则控制程序中各个变量在共享数据区域和私有数据区域的访问方式,JMM是围绕原子性、有序性、可见性展开的。

JMM与硬件内存架构的关系
Java内存模型与硬件内存架构之间存在差异。硬件内存架构没有区分线程栈和堆。对于硬件,所有的线程栈和堆都分布在主内存中。部分线程栈和堆可能有时候会出现在CPU缓存中和CPU内部的寄存器中。如下图所示,Java内存模型和计算机硬件内存架构是一个交叉关系:

内存交互操作

关于主内存与工作内存之间的具体交互协议,即一个变量如何从主内存拷贝到工作内存、如何从工作内存同步到主内存之间的实现细节,Java内存模型定义了以下八种操作来完成:
lock(锁定):作用于主内存的变量,把一个变量标识为一条线程独占状态。
unlock(解锁):作用于主内存变量,把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定。
read(读取):作用于主内存变量,把一个变量值从主内存传输到线程的工作内存中,以便随后的load动作使用
load(载入):作用于工作内存的变量,它把read操作从主内存中得到的变量值放入工作内存的变量副本中。
use(使用):作用于工作内存的变量,把工作内存中的一个变量值传递给执行引擎,每当虚拟机遇到一个需要使用变量的值的字节码指令时将会执行这个操作。
assign(赋值):作用于工作内存的变量,它把一个从执行引擎接收到的值赋值给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作。
store(存储):作用于工作内存的变量,把工作内存中的一个变量的值传送到主内存中,以便随后的write的操作。
write(写入):作用于主内存的变量,它把store操作从工作内存中一个变量的值传送到主内存的变量中。

Java内存模型还规定了在执行上述八种基本操作时,必须满足如下规则:
如果要把一个变量从主内存中复制到工作内存,就需要按顺寻地执行read和load操作, 如果把变量从工作内存中同步回主内存中,就要按顺序地执行store和write操作。但Java内存模型只要求上述操作必须按顺序执行,而没有保证必须是连续执行。
不允许read和load、store和write操作之一单独出现
不允许一个线程丢弃它的最近assign的操作,即变量在工作内存中改变了之后必须同步到主内存中。
不允许一个线程无原因地(没有发生过任何assign操作)把数据从工作内存同步回主内存中。
一个新的变量只能在主内存中诞生,不允许在工作内存中直接使用一个未被初始化(load或assign)的变量。即就是对一个变量实施use和store操作之前,必须先执行过了assign和load操作。
一个变量在同一时刻只允许一条线程对其进行lock操作,但lock操作可以被同一条线程重复执行多次,多次执行lock后,只有执行相同次数的unlock操作,变量才会被解锁。lock和unlock必须成对出现
如果对一个变量执行lock操作,将会清空工作内存中此变量的值,在执行引擎使用这个变量前需要重新执行load或assign操作初始化变量的值
如果一个变量事先没有被lock操作锁定,则不允许对它执行unlock操作;也不允许去unlock一个被其他线程锁定的变量。
对一个变量执行unlock操作之前,必须先把此变量同步到主内存中(执行store和write操作)。

JMM的内存可见性保证

按程序类型,Java程序的内存可见性保证可以分为下列3类:
单线程程序。单线程程序不会出现内存可见性问题。编译器、runtime和处理器会共同确保单线程程序的执行结果与该程序在顺序一致性模型中的执行结果相同。
正确同步的多线程程序。正确同步的多线程程序的执行将具有顺序一致性(程序的执行结果与该程序在顺序一致性内存模型中的执行结果相同)。这是JMM关注的重点,JMM通过限制编译器和处理器的重排序来为程序员提供内存可见性保证。
未同步/未正确同步的多线程程序。JMM为它们提供了最小安全性保障:线程执行时读取到的值,要么是之前某个线程写入的值,要么是默认值未同步程序在JMM中的执行时,整体上是无序的,其执行结果无法预知。 JMM不保证未同步程序的执行结果与该程序在顺序一致性模型中的执行结果一致。

未同步程序在JMM中的执行时,整体上是无序的,其执行结果无法预知。未同步程序在两个模型中的执行特性有如下几个差异。
1)顺序一致性模型保证单线程内的操作会按程序的顺序执行,而JMM不保证单线程内的操作会按程序的顺序执行,比如正确同步的多线程程序在临界区内的重排序。
2)顺序一致性模型保证所有线程只能看到一致的操作执行顺序,而JMM不保证所有线程能看到一致的操作执行顺序。
3)顺序一致性模型保证对所有的内存读/写操作都具有原子性,而JMM不保证对64位的long型和double型变量的写操作具有原子性(32位处理器)。
JVM在32位处理器上运行时,可能会把一个64位long/double型变量的写操作拆分为两个32位的写操作来执行。这两个32位的写操作可能会被分配到不同的总线事务中执行,此时对这个64位变量的写操作将不具有原子性。从JSR-133内存模型开始(即从JDK5开始),仅仅只允许把一个64位long/double型变量的写操作拆分为两个32位的写操作来执行,任意的读操作在JSR-133中都必须具有原子性

volatile的内存语义

volatile的特性

可见性:对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入。
原子性:对任意单个volatile变量的读/写具有原子性,但类似于volatile++这种复合操作不具有原子性(基于这点,我们通过会认为volatile不具备原子性)。volatile仅仅保证对单个volatile变量的读/写具有原子性,而锁的互斥执行的特性可以确保对整个临界区代码的执行具有原子性。
64位的long型和double型变量,只要它是volatile变量,对该变量的读/写就具有原子性。
有序性:对volatile修饰的变量的读写操作前后加上各种特定的内存屏障来禁止指令重排序来保障有序性。
在JSR-133之前的旧Java内存模型中,虽然不允许volatile变量之间重排序,但旧的Java内存模型允许volatile变量与普通变量重排序。为了提供一种比锁更轻量级的线程之间通信的机制,JSR-133专家组决定增强volatile的内存语义:严格限制编译器和处理器对volatile变量与普通变量的重排序,确保volatile的写-读和锁的释放-获取具有相同的内存语义。

volatile写-读的内存语义

当写一个volatile变量时,JMM会把该线程对应的本地内存中的共享变量值刷新到主内存。
当读一个volatile变量时,JMM会把该线程对应的本地内存置为无效,线程接下来将从主内存中读取共享变量。

volatile可见性实现原理

JMM内存交互层面实现
volatile修饰的变量的read、load、use操作和assign、store、write必须是连续的,即修改后必须立即同步回主内存,使用时必须从主内存刷新,由此保证volatile变量操作对多线程的可见性。
硬件层面实现
通过lock前缀指令,会锁定变量缓存行区域并写回主内存,这个操作称为“缓存锁定”,缓存一致性机制会阻止同时修改被两个以上处理器缓存的内存区域数据。一个处理器的缓存回写到内存会导致其他处理器的缓存无效。

volatile在hotspot的实现

字节码解释器实现
JVM中的字节码解释器(bytecodeInterpreter),用C++实现了JVM指令,其优点是实现相对简单且容易理解,缺点是执行慢。
bytecodeInterpreter.cpp

模板解释器实现
模板解释器(templateInterpreter),其对每个指令都写了一段对应的汇编代码,启动时将每个指令与对应汇编代码入口绑定,可以说是效率做到了极致。

templateTable_x86_64.cpp
void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
                                     order_constraint) {
  // Helper function to insert a is-volatile test and memory barrier
  if (os::is_MP()) { // Not needed on single CPU
    __ membar(order_constraint);
  }
}

// 负责执行putfield或putstatic指令
void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
	// ...
	 // Check for volatile store
    __ testl(rdx, rdx);
    __ jcc(Assembler::zero, notVolatile);

    putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags);
    volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
                                                 Assembler::StoreStore));
    __ jmp(Done);
    __ bind(notVolatile);

    putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags);

    __ bind(Done);
 }
assembler_x86.hpp
  // Serializes memory and blows flags
  void membar(Membar_mask_bits order_constraint) {
    // We only have to handle StoreLoad
    // x86平台只需要处理StoreLoad
    if (order_constraint & StoreLoad) {

      int offset = -VM_Version::L1_line_size();
      if (offset < -128) {
        offset = -128;
      }

      // 下面这两句插入了一条lock前缀指令: lock addl $0, $0(%rsp) 
      lock(); // lock前缀指令
      addl(Address(rsp, offset), 0); // addl $0, $0(%rsp) 
    }
  }

在linux系统x86中的实现
orderAccess_linux_x86.inline.hpp
inline void OrderAccess::storeload()  { fence(); }
inline void OrderAccess::fence() {
  if (os::is_MP()) {
    // always use locked addl since mfence is sometimes expensive
#ifdef AMD64
    __asm__ volatile ("lock; addl $0,0(%%rsp)" : : : "cc", "memory");
#else
    __asm__ volatile ("lock; addl $0,0(%%esp)" : : : "cc", "memory");
#endif
  }

x86处理器中利用lock实现类似内存屏障的效果。

lock前缀指令的作用

  1. 确保后续指令执行的原子性。在Pentium及之前的处理器中,带有lock前缀的指令在执行期间会锁住总线,使得其它处理器暂时无法通过总线访问内存,很显然,这个开销很大。在新的处理器中,Intel使用缓存锁定来保证指令执行的原子性,缓存锁定将大大降低lock前缀指令的执行开销。
  2. LOCK前缀指令具有类似于内存屏障的功能,禁止该指令与前面和后面的读写指令重排序。
  3. LOCK前缀指令会等待它之前所有的指令完成、并且所有缓冲的写操作写回内存(也就是将store buffer中的内容写入内存)之后才开始执行,并且根据缓存一致性协议,刷新store buffer的操作会导致其他cache中的副本失效。

汇编层面volatile的实现

添加下面的jvm参数查看之前可见性Demo的汇编指令
-XX:+UnlockDiagnosticVMOptions -XX:+PrintAssembly -Xcomp


验证了可见性使用了lock前缀指令

从硬件层面分析Lock前缀指令

《64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf》中有如下描述:
The 32-bit IA-32 processors support locked atomic operations on locations in system memory. These operations are typically used to manage shared data structures (such as semaphores, segment descriptors, system segments, or page tables) in which two or more processors may try simultaneously to modify the same field or flag. The processor uses three interdependent mechanisms for carrying out locked atomic operations:
• Guaranteed atomic operations
• Bus locking, using the LOCK# signal and the LOCK instruction prefix
• Cache coherency protocols that ensure that atomic operations can be carried out on cached data structures (cache lock); this mechanism is present in the Pentium 4, Intel Xeon, and P6 family processors
32位的IA-32处理器支持对系统内存中的位置进行锁定的原子操作。这些操作通常用于管理共享的数据结构(如信号量、段描述符、系统段或页表),在这些结构中,两个或多个处理器可能同时试图修改相同的字段或标志。处理器使用三种相互依赖的机制来执行锁定的原子操作:
有保证的原子操作
总线锁定,使用LOCK#信号和LOCK指令前缀
缓存一致性协议,确保原子操作可以在缓存的数据结构上执行(缓存锁);这种机制出现在Pentium 4、Intel Xeon和P6系列处理器中

CPU缓存架构剖析

CPU缓存架构&缓存一致性协议

有序性问题深入分析

思考:下面的Java程序中x和y的最终结果是什么?

public class ReOrderTest {

    private static int x = 0, y = 0;

    private static  int a = 0, b = 0;

    public static void main(String[] args) throws InterruptedException{
        int i=0;
        while (true) {
            i++;
            x = 0;
            y = 0;
            a = 0;
            b = 0;

            /**
             *  x,y:
             */
            Thread thread1 = new Thread(new Runnable() {
                @Override
                public void run() {
                    shortWait(20000);
                    a = 1;
                    x = b;

                }
            });
            Thread thread2 = new Thread(new Runnable() {
                @Override
                public void run() {
                    b = 1;
                    y = a;
                }
            });

            thread1.start();
            thread2.start();
            thread1.join();
            thread2.join();

            System.out.println("第" + i + "次(" + x + "," + y + ")");

            if (x==0&&y==0){
                break;
            }

        }

    }

    public static void shortWait(long interval){
        long start = System.nanoTime();
        long end;
        do{
            end = System.nanoTime();
        }while(start + interval >= end);
    }

指令重排序

Java语言规范规定JVM线程内部维持顺序化语义。即只要程序的最终结果与它顺序化情况的结果相等,那么指令的执行顺序可以与代码顺序不一致,此过程叫指令的重排序。
指令重排序的意义:JVM能根据处理器特性(CPU多级缓存系统、多核处理器等)适当的对机器指令进行重排序,使机器指令能更符合CPU的执行特性,最大限度的发挥机器性能。
在编译器与CPU处理器中都能执行指令重排优化操作

volatile重排序规则


volatile禁止重排序场景:
1.  第二个操作是volatile写,不管第一个操作是什么都不会重排序
2.  第一个操作是volatile读,不管第二个操作是什么都不会重排序
3.  第一个操作是volatile写,第二个操作是volatile读,也不会发生重排序

JMM内存屏障插入策略

  1. 在每个volatile写操作的前面插入一个StoreStore屏障
  2. 在每个volatile写操作的后面插入一个StoreLoad屏障
  3. 在每个volatile读操作的后面插入一个LoadLoad屏障
  4. 在每个volatile读操作的后面插入一个LoadStore屏障

JSR133规范

x86处理器不会对读-读、读-写和写-写操作做重排序, 会省略掉这3种操作类型对应的内存屏障。仅会对写-读操作做重排序,所以volatile写-读操作只需要在volatile写后插入StoreLoad屏障

JVM层面的内存屏障

在JSR规范中定义了4种内存屏障:
LoadLoad屏障:(指令Load1; LoadLoad; Load2),在Load2及后续读取操作要读取的数据被访问前,保证Load1要读取的数据被读取完毕。
LoadStore屏障:(指令Load1; LoadStore; Store2),在Store2及后续写入操作被刷出前,保证Load1要读取的数据被读取完毕。
StoreStore屏障:(指令Store1; StoreStore; Store2),在Store2及后续写入操作执行前,保证Store1的写入操作对其它处理器可见。
StoreLoad屏障:(指令Store1; StoreLoad; Load2),在Load2及后续所有读取操作执行前,保证Store1的写入对所有处理器可见。它的开销是四种屏障中最大的。在大多数处理器的实现中,这个屏障是个万能屏障,兼具其它三种内存屏障的功能
由于x86只有store load可能会重排序,所以只有JSR的StoreLoad屏障对应它的mfence或lock前缀指令,其他屏障对应空操作

硬件层内存屏障

硬件层提供了一系列的内存屏障 memory barrier / memory fence(Intel的提法)来提供一致性的能力。拿X86平台来说,有几种主要的内存屏障:

  1. lfence,是一种Load Barrier 读屏障
  2. sfence, 是一种Store Barrier 写屏障
  3. mfence, 是一种全能型的屏障,具备lfence和sfence的能力
  4. Lock前缀,Lock不是一种内存屏障,但是它能完成类似内存屏障的功能。Lock会对CPU总线和高速缓存加锁,可以理解为CPU指令级的一种锁。它后面可以跟ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG等指令。
    内存屏障有两个能力:
  5. 阻止屏障两边的指令重排序
  6. 刷新处理器缓存/冲刷处理器缓存
    对Load Barrier来说,在读指令前插入读屏障,可以让高速缓存中的数据失效,重新从主内存加载数据;对Store Barrier来说,在写指令之后插入写屏障,能让写入缓存的最新数据写回到主内存。
    Lock前缀实现了类似的能力,它先对总线和缓存加锁,然后执行后面的指令,最后释放锁后会把高速缓存中的数据刷新回主内存。在Lock锁住总线的时候,其他CPU的读写请求都会被阻塞,直到锁释放。
    不同硬件实现内存屏障的方式不同,Java内存模型屏蔽了这种底层硬件平台的差异,由JVM来为不同的平台生成相应的机器码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/172936.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

媲美有线操作,支持4KHz响应和无线充电的游戏鼠标,雷柏VT3S上手

对于无线鼠标来说&#xff0c;操作延迟和精度对游戏操作影响很大&#xff0c;常见的游戏鼠标至少都有1KHz的回报率&#xff0c;而雷柏今年已经出了很多支持4KHz回报的鼠标了&#xff0c;像是我现在用的这款VT3S游戏鼠标&#xff0c;就搭载了旗舰级的原相3395引擎&#xff0c;支…

SpringBean的配置详解

Bean的基础配置 例如&#xff1a;配置UserDaoImpl由Spring容器负责管理 <beanid"userDao"class"com.xfy.dao.Impl.UserDaoImpl"></bean> 此时存储到Spring容器中的Bean的beanName是userDao&#xff0c;值是UserDaoImpl&#xff0c;可以根据bea…

pytorch中gather函数的理解

pytorch函数gather理解 torch.gather(input, dim, index, outNone) → Tensor Parameters: input (Tensor) – 源张量dim (int) – 索引的轴index (LongTensor) – 聚合元素的下标(index需要是torch.longTensor类型)out (Tensor, optional) – 目标张量 公式含义 这个函数的…

股票自选(四)

4-自选 自选表功能&#xff0c;均需要使用 Token 令牌进行操作&#xff0c;目的是为了将数据隔离。 添加自选表的作用是进行推送&#xff0c; 将 自选表中的近十天的涨跌幅情况通过邮箱的方式推送给对应的用户。 一. 添加到自选表 接口描述: 接口地址:/StockApi/stockSele…

转录组学习第四弹-数据质控

数据质控 将SRR转为fastq之后&#xff0c;我们需要对fastq进行质量检查&#xff0c;排除质量不好的数据 1.质量检查&#xff0c;生成报告文件 ls *fastq.gz|while read id;do fastqc $id;done并行处理 ls *fastq.gz|xargs fastqc -t 102.生成 html 报告文件和对应的 zip 压缩…

阿里巴巴对裁员谣言报警

我是卢松松&#xff0c;点点上面的头像&#xff0c;欢迎关注我哦&#xff01; 前两天王自如言论事件&#xff0c;格力选择了报警&#xff0c;称高管遭到姊妹集体侮辱诽谤。 而这两天&#xff0c;阿里巴巴也报警了&#xff0c;原因是网传阿里巴巴要裁员25000人。 咱不公关了…

见证历史!合资车企「最后一搏」

从上海车展&#xff0c;到广州车展&#xff0c;最大的变化莫过于传统合资品牌在新能源及智能电动市场的持续发力。或许&#xff0c;2024年将是最后一搏的拐点。 在本届广州车展上&#xff0c;广汽丰田发布了全新新能源品牌铂智&#xff0c;铂智品牌旗下首款产品铂智4X正式亮相。…

数据结构(c语言版) 树的遍历

作业要求 以如下图为例&#xff0c;完成树的遍历&#xff1a; 1、利用孩子兄弟表示法的存储结构 2、利用先根序列创建树 3、先根遍历树 4、后根遍历树 思考 预期的结果应该为&#xff1a; 1、先根创建树时需要输入的数据为&#xff1a; A B E 0 F 0 0 C 0 D G 0 0 0 0 2、…

Android codec2 视频框架之输出端的内存管理

文章目录 前言setSurfacestart从哪个pool中申请buffer解码后框架的处理流程renderOutbuffer 输出显示 前言 输出buffer整体的管理流程主要可以分为三个部分&#xff1a; MediaCodc 和 应用之间的交互 包括设置Surface、解码输出回调到MediaCodec。将输出buffer render或者rele…

使用JMX监控ZooKeeper和Kafka

JVM 默认会通过 JMX 的方式暴露基础指标,很多中间件也会通过 JMX 的方式暴露业务指标,比如 Kafka、Zookeeper、ActiveMQ、Cassandra、Spark、Tomcat、Flink 等等。掌握了 JMX 监控方式,就掌握了一批程序的监控方式。本节介绍 JMX-Exporter 的使用,利用 JMX-Exporter 把 JMX…

win11,无法修改文件的只读属性,解决办法

在尝试更改文件或文件夹的权限时&#xff0c;您可能经常会遇到错误 - 无法枚举容器中的对象访问被拒绝。 虽然作为管理员&#xff0c;您可以更改访问权限&#xff0c;但有时即使是管理员也可能会遇到相同的错误消息。 这是一个常见错误&#xff0c;通常由不同论坛上的用户提出…

【云原生-Kurbernetes篇】HPA 与 Rancher管理工具

文章目录 一、Pod的自动伸缩1.1 HPA1.1.1 简介1.1.2 HPA的实现原理1.1.3 相关命令 1.2 VPA1.2.1 简介1.2.2 VPA的组件1.2.3 VPA工作原理 1.3 metrics-server简介 二、 HPA的部署与测试2.1 部署metrics-serverStep1 编写metrics-server的配置清单文件Step2 部署Step3 测试kubect…

Python数据结构基础教学,从零基础小白到实战大佬!

文章目录 前言 Python有那几种数据结构&#xff1f;1)列表&#xff08;list)1.1 什么是列表&#xff1f;1.2列表的增删改查 2&#xff09;字典&#xff08;Dictionary)2.1 什么是字典&#xff1f;2.2 字典的增删改查 3&#xff09;元组&#xff08;Tuple)4)集合&#xff08;Set…

STM32通用定时器产生PWM信号

STM32通用定时器产生PWM信号 PWM信号stm32定时器PWM生成模式PWM配置基本步骤PWM周期计算CubeMX配置代码展现 本期内容我将展示使用STM32通用定时器产生PWM信号&#xff0c;这里以定时器3通道3为例 PWM信号 如果还不懂的话&#xff0c;可以看看 &#xff1a; “蓝桥杯单片机学习…

SSM框架(一):Spring 容器

文章目录 一、Spring Framework系统框架二、IoC控制反转 与 DI依赖注入 简单入门三、Bean3.1 Bean的配置3.2 实例化Bean的四种方式3.3 Bean的生命周期 四、依赖注入4.1 setter注入4.2 构造器注入4.3 注入方式选择4.4 依赖自动装配4.5 集合注入4.6 案例&#xff1a;配置数据库4.…

Android加固为何重要?很多人不学

为什么要加固&#xff1f; APP加固是对APP代码逻辑的一种保护。原理是将应用文件进行某种形式的转换&#xff0c;包括不限于隐藏&#xff0c;混淆&#xff0c;加密等操作&#xff0c;进一步保护软件的利益不受损坏。总结主要有以下三方面预期效果&#xff1a; 1.防篡改&#x…

JSP在线商城系统eclipse定制开发mysql数据库BS模式java编程B2C

一、源码特点 java 在线商城系统是一套完善的web设计系统 &#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,eclipse开发&#xff0c;数据库为Mysql5.0&#xff0c;使用…

Redis事务+秒杀案例

Redis事务是一个单独的隔离操作&#xff0c;是指将多条命令放在一个命令队列当中&#xff0c;按顺序执行&#xff0c;保证多个命令在同一个事务中执行而不受其他客户端的影响。 通俗来说就是&#xff1a;串联多个命令防止别的命令插队。 1.Multi、Exec、discard 在输入Multi命…

基于非链式(数组)结点结构的二叉树的层序、先序、中序、后序输入创建以及层序、先序、中序、后序输出

这个系列来记录学习一下如何用数组完成二叉树的4种顺序的创建&#xff0c;以及其4种顺序的遍历。 我们知道&#xff0c;对于一棵二叉树而言它有4种遍历的顺序&#xff0c;那自然就导致其输入结点时&#xff0c;也分这四种顺序。 分别是—— 层序&#xff1a; …

STM32定时器输入捕获测量高电平时间

STM32定时器输入捕获测量高电平时间 输入捕获测量高电平时间CuebMX配置代码部分 本篇内容要求读者对STM32通用定时器有一点理解&#xff0c;如有不解&#xff0c;请看 夜深人静学32系列15——通用定时器 输入捕获 输入捕获是STM32通用定时器的一种功能&#xff0c;可以捕获特定…