Spark RDD 持久化(CheckPoint 检查点)

RDD Cache 缓存
RDD 通过 Cache 或者 Persist 方法将前面的计算结果缓存,默认情况下会把数据以缓存
在 JVM 的堆内存中。但是并不是这两个方法被调用时立即缓存,而是触发后面的 action 算
子时,该 RDD 将会被缓存在计算节点的内存中

// cache 操作会增加血缘关系,不改变原有的血缘关系
println(wordToOneRdd.toDebugString)
// 数据缓存。
wordToOneRdd.cache()
// 可以更改存储级别
// mapRdd.persist(StorageLevel.MEMORY_AND_DISK_2)

存储级别

object StorageLevel {
 val NONE = new StorageLevel(false, false, false, false)
 val DISK_ONLY = new StorageLevel(true, false, false, false)
 val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
 val MEMORY_ONLY = new StorageLevel(false, true, false, true)
 val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
 val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
 val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
 val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
 val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
 val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
 val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)
 val OFF_HEAP = new StorageLevel(true, true, true, false, 1)

在这里插入图片描述
缓存有可能丢失,或者存储于内存的数据由于内存不足而被删除,RDD 的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于 RDD 的一系列转换,丢失的数据会被重算,由于 RDD 的各个 Partition 是相对独立的,因此只需要计算丢失的部分即可,并不需要重算全部 Partition。
Spark 会自动对一些 Shuffle 操作的中间数据做持久化操作(比如:reduceByKey)。这样做的目的是为了当一个节点 Shuffle 失败了避免重新计算整个输入。但是,在实际使用的时候,如果想重用数据,仍然建议调用 persist 或cache

RDD CheckPoint 检查点
所谓的检查点其实就是通过将 RDD 中间结果写入磁盘由于血缘依赖过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果检查点之后有节点出现问题,可以从检查点开始重做血缘,减少了开销。
对 RDD 进行 checkpoint 操作并不会马上被执行,必须执行 Action 操作才能触发。

// 设置检查点路径
sc.setCheckpointDir("./checkpoint1")
// 创建一个 RDD,读取指定位置文件
val lineRdd: RDD[String] = sc.textFile("input/test1.txt")
// 业务逻辑
val wordRdd: RDD[String] = lineRdd.flatMap(line => line.split(" "))
val wordToOneRdd: RDD[(String, Long)] = wordRdd.map {
 word => {
 (word, System.currentTimeMillis())
 }
}
// 增加缓存,避免再重新跑一个 job 做 checkpoint
wordToOneRdd.cache()
// 数据检查点:针对 wordToOneRdd 做检查点计算
wordToOneRdd.checkpoint()
// 触发执行逻辑
wordToOneRdd.collect().foreach(println)

缓存和检查点区别
1)Cache 缓存只是将数据保存起来,不切断血缘依赖。Checkpoint 检查点切断血缘依赖。
2)Cache 缓存的数据通常存储在磁盘、内存等地方,可靠性低。Checkpoint 的数据通常存
储在 HDFS 等容错、高可用的文件系统,可靠性高。
3)建议对 checkpoint()的 RDD 使用 Cache 缓存,这样 checkpoint 的 job 只需从 Cache 缓存
中读取数据即可,否则需要再从头计算一次 RDD。

示例1:
数据:user_test.csv

name,number
lisi,123
wangwu,456
zhangsan,789

RDD CheckPoint 检查点 测试脚本:

package SparkTest.SparkSql

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession

object DSLTest {
  def main(args: Array[String]): Unit = {
    val session = SparkSession.builder().appName("DSLTest").master("local[*]").getOrCreate()
    import  session.implicits._
    import org.apache.spark.sql.functions._
    // 设置检查点路径
    val sc = session.sparkContext
    sc.setCheckpointDir("file:///F:/JavaTest/SparkDemo/checkpoint")

    // 创建一个 RDD,读取指定位置文件
    val lineRdd: RDD[String] = sc.textFile("file:///F:/JavaTest/SparkDemo/data/user_test.csv")
    
    // 业务逻辑
    val wordRdd: RDD[String] = lineRdd.flatMap(line => line.split(" "))
    val wordToOneRdd: RDD[(String, Long)] = wordRdd.map {
      word => {
        (word, System.currentTimeMillis())
      }
    }
    
    // 增加缓存,避免再重新跑一个 job 做 checkpoint
    wordToOneRdd.cache()
    // 数据检查点:针对 wordToOneRdd 做检查点计算
    wordToOneRdd.checkpoint()
    // 触发执行逻辑
    wordToOneRdd.collect().foreach(println)

    session.close()

  }
}
//结果:
(name,number,1682664424265)
(lisi,123,1682664424265)
(wangwu,456,1682664424265)
(zhangsan,789,1682664424265)
F:/JavaTest/SparkDemo/checkpoint下多出文件

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/17172.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

常用排序算法汇总—Python版

一、选择排序 1. 原理: 选择排序(Selection Sort)是一种简单直观的排序算法,它的基本思路是将数组按顺序分成已排序部分和未排序部分,然后每次从未排序部分中选择出最小的元素,将其添加到已排序部分的末尾…

【五一创作】【软考:软件设计师】 5 计算机组成与体系结构(三)认证技术 | 计算机可靠性

欢迎来到爱书不爱输的程序猿的博客, 本博客致力于知识分享,与更多的人进行学习交流 本文收录于软考中级:软件设计师系列专栏,本专栏服务于软考中级的软件设计师考试,包括不限于知识点讲解与真题讲解两大部分,并且提供电子教材与电子版真题,关注私聊即可 …

三范式(详解+例子)

第一范式(1NF):每一列都是不可分割的原子数据项(什么意思,每一项都不可分割,像下面的表格就能分割,所以它连第一范式都算不上) 分割后的样子 (它就是第一范式了&#xff…

FPGA学习_01_基础知识(有点劝退,心灵弱小者勿入)

有些人喜欢直接拿开发板看教程开干,我认为了解点历史发展没什么坏处,一些FPGA的基础知识也是同样重要的。 1.1. FPGA的主要厂商 XILINX 占据FPGA绝大部分的市场份额 ALTERA 被 INTEL 167亿美元收购 改名为INTEL LATTICE 被神秘的中国公…

HMM理论学习笔记-隐马尔可夫模型的三个元素、假设和问题

文章目录 概率论基础条件概率全概公式边缘概率联合概率联合概率与边缘概率的关系贝叶斯公式(条件联合概率)马尔科夫链的概念 HMM简述HMM的三个元素符号定义1、状态转移概率矩阵A2、观测概率矩阵B3、初始状态概率向量π HMM的三个假设1、齐次马尔可夫假设…

Spring Boot使用(基础)

目录 1.Spring Boot是什么? 2.Spring Boot使用 2.1Spring目录介绍 2.2SpringBoot的使用 1.Spring Boot是什么? Spring Boot就是Spring脚手架,就是为了简化Spring开发而诞生的 Spring Boot的优点: 1.快速集成框架,提供了秒级继承各种框架,提供了启动添加依赖的功能 2.内…

简单搭建node后台(笔记用)

毕设过程 mongodb 配置 使用node写后台一些语法运用bug关于安装一款群控软件后,修改了环境变量导致后台崩溃![](https://img-blog.csdnimg.cn/7c684b2e318048b3ad1db78484e10e6a.jpeg) vue管理后台 mongodb 配置 https://blog.csdn.net/weixin_43405300/article/de…

【SPSS】相关分析和偏相关分析详细操作过程(附案例实战)

🤵‍♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞&#x1f4…

java的spi机制使用场景讲解和具体使用

八股文背多了,相信大家都听说过一个词,SPI扩展。 有的面试官就很喜欢问这个问题,SpringBoot的自动装配是如何实现的? 基本上,你一说是基于spring的SPI扩展机制,再把spring.factories文件和EnableAutoConf…

C++(多态上)

目录: 1.多态的概念 2.多态的定义和实现 3.虚函数构成重写的特例 4.剖析一道非常经典的题 5.剖析多态的原理 ------------------------------------------------------------------------------------------------------------------------- 1.多态的概念 概念:通俗来说&#…

Word2vec原理+实战学习笔记(二)

来源:投稿 作者:阿克西 编辑:学姐 前篇:Word2vec原理实战学习笔记(一)​​​​​​​ 视频链接:https://ai.deepshare.net/detail/p_5ee62f90022ee_zFpnlHXA/6 5 对比模型(论文Mod…

Python使用AI photo2cartoon制作属于你的漫画头像

Python使用AI photo2cartoon制作属于你的漫画头像 1. 效果图2. 原理3. 源码参考 git clone https://github.com/minivision-ai/photo2cartoon.git cd ./photo2cartoon python test.py --photo_path images/photo_test.jpg --save_path images/cartoon_result.png1. 效果图 官方…

(22)目标检测算法之 yolov8模型导出总结

yolov8模型导出总结 不断更新中… 几种部署情况: onnxxmlengine官网说明:https://github.com/ultralytics/ultralytics/blob/main/docs/modes/export.md导出参数: onnx 参数解析format: 导出的模型形式:onnx xml engine ... imgsz: 设置模型的输入尺寸大小,默认640*640 ke…

磁盘和固态磁盘

磁盘和固态磁盘 磁盘的物理结构 ​ 磁盘的表面由一些磁性的物质组成,可以用这些磁性物质来记录二进制数据。磁盘的盘面被划分成一个个磁道,这样一个“圈”就是一个磁道。同一磁盘上不同磁道上记录的信息量相同,因此内侧磁道上的数据密度较大…

STM32F429移植microPython笔记

目录 一、microPython下载。二、安装开发环境。三、编译开发板源码。四、下载验证。 一、microPython下载。 https://micropython.org/download/官网 下载后放在linux中。 解压命令: tar -xvf micropython-1.19.1.tar.xz 二、安装开发环境。 sudo apt-get inst…

【Java笔试强训 14】

🎉🎉🎉点进来你就是我的人了博主主页:🙈🙈🙈戳一戳,欢迎大佬指点! 欢迎志同道合的朋友一起加油喔🤺🤺🤺 目录 一、选择题 二、编程题 🔥计算日期…

玩着3dmax把Python学了-01

3ds Max 2022以前的版本要借助Python的api来实现Python编程达到编辑绘图脚本的功能,但是好消息来了,3ds Max 2022 起,MaxPlus 不再作为 3ds Max 的 Python API 包含在内。而是3ds Max 将 Python 3.7 的标准版本包涵其中了,位于 [3…

Filter 过滤器

Filter过滤器介绍 这里我们讲解Filter的执行流程,从下图可以大致了解到,当客户端发送请求的时候,会经过过滤器,然后才能到我们的servlet,当我们的servlet处理完请求之后,我们的response还是先经过过滤器才…

基于SpringBoot的线上日志阅读器

软件特点 部署后能通过浏览器查看线上日志。支持Linux、Windows服务器。采用随机读取的方式,支持大文件的读取。支持实时打印新增的日志(类终端)。支持日志搜索。 使用手册 基本页面 配置路径 配置日志所在的目录,配置后按回车…

2023亚马逊云科技研究,数字化技能为中国企业和员工带来经济效益

在中国,信息技术在个人、企业和宏观经济层面都推动着重大变革。为了研究这些变化所带来的影响,盖洛普咨询公司(Gallup)和亚马逊云科技开展了关于数字化技能的调研。 研究表明,数字化技能正在为中国企业和在职人员带来巨大的经济价值&#x…