Python - Wave2lip 环境配置与 Wave2lip x GFP-GAN 实战 [超详细!]

一.引言

前面介绍了 GFP-GAN 的原理与应用,其用于优化图像画质。本文关注另外一个相关的项目 Wave2lip,其可以通过人物视频与自定义音频进行适配,改变视频中人物的嘴型与音频对应。

二.Wave2Lip 简介

Wave2lip 研究 lip-syncing 以达到视频匹配目标语音片段的目的。目前的作品擅长在训练阶段看到的特定人的静态图像或视频。然而,它们无法准确地改变动态、无约束的谈话面部视频中的任意身份。通过学习强大的唇同步鉴别器来解决它们。接下来,我们提出了新的、严格的评估基准以及在无约束视频中精确测量嘴唇同步的度量。对我们具有挑战性的基准进行了广泛的定量评估,结果表明视频的唇同步准确性几乎和真正同步的一样好。

论文地址: https://arxiv.org/pdf/2008.10010.pdf 

1.Wave2Lip 训练数据

训练中用到了LRS2 数据集,该数据集由英国广播公司电视台的数千句口语组成。每句话的长度不超过100个字符。训练、验证和测试集根据广播日期进行划分。数据集统计数据如下表所示。

预训练集中的话语对应于部分句子和多个句子,而训练集仅由单个完整句子或短语组成。预训练和训练之间有一些重叠。

2.Wave2Lip 训练目标

wav2lip 模型的训练由生成器和判别器共同组成。GAN 负责学习音频-图像之间的对应关系,生成同步的嘴唇动作。判别器负责评估图像-音频的同步性。具体的,音频会被处理为音频 chunk 并处理转换为梅尔频谱矩阵,该矩阵常用于信号处理中的音频频谱特征;视频则是会逐帧抽取,转化为 [Channel、width、height] 的多通道矩阵。通过训练频谱矩阵与图像多通道矩阵的对应关系,学习chunk 与视频帧中口型的对应关系,不断地反馈训练以优化视频与音频的同步效果。

3.Wave2Lip 模型推理

wave2lip 实战中大致遵循下述流程,下述流程扩展为整个视频图像帧,即可实现视频与音频的嘴型对应:

解析视频文件

这里一般最常用的格式即为 mp4,通过 cv2 库的 VideoCapture 解析视频文件,并通过 video_stream 流式读取视频的每一帧,更简单的,你的视频可以是一张人物的 Face 图,这样会将图像复制扩展为与音频匹配的帧数。

音频文件解析

使用 audio 库处理音频文件,为了统一,这里会使用 ffmepg 将音频文件统一转换为 wav 格式。随后通过 melspectrogram 方法获取 wav 音频的梅尔频谱矩阵并将矩阵转换为多个 chunk。

人脸识别模块

针对视频帧识别人脸位置对应的 coord 坐标,因此 Wave2lip 实现中还需要一个 face-detect 的模型,用于对每一帧图像中人脸进行定位。

GAN 生成

基于上面的人脸的图像通道数字矩阵与音频的 mel 频谱矩阵构造模型的输入,通过调用 GAN 模型生成对应音频的嘴型图像。

图像拼接与重建

将预测得到的 pred 和 coord 坐标结合,替换原图中的人脸部分,实现人脸与嘴型的替换。

三.Wave2lip 环境搭建

 代码实现: https://github.com/Rudrabha/Wav2Lip

1.Package 安装

python 3.6

conda create -n wave2lip python=3.6
conda activate wave2lip

ffmpeg

ffmpeg 主要用于音频文件转换为 wav 格式

sudo apt-get install ffmpeg

requirements

下载 Wave2lip 对应的 github 项目,安装对应的依赖:

librosa==0.7.0
numpy==1.17.1
opencv-contrib-python>=4.2.0.34
opencv-python==4.1.0.25
torch==1.1.0
torchvision==0.3.0
tqdm==4.45.0
numba==0.48
pip install -r requirements.txt

face detection model

模型下载地址: 预训练模型

备用下载地址: 备用节点下载

下载好的 .pth 模型需要放置到项目对应的 face_detection/detection/sfd/s3fd.pth 路径下:

2.模型 weights 下载

 Wave2lip: Highly accurate lip-sync

README 中给出了 4 个模型 weights,大小在 50M - 500M 之间,其有各自不同的擅长,有的擅长口型对应,有的擅长图像质量。不过博主测试只有第一个模型可以跑通,其他模型跑通的同学也欢迎在评论区一起交流。

四.Wave2lip X GFP-GAN 实战

1.参数配置

python inference.py --checkpoint_path <ckpt> --face <video.mp4> --audio <an-audio-source> 

-- checkpoint_path 模型地址

-- face 要修改的视频,也可以是静态图

-- audio 要适配的音频

其他参数: 

-- pads 调整检测到的面部边界框。通常会带来更好的结果。

-- nosmooth 如果嘴巴位置错位或有伪影,可能是过度平滑了人脸检测,加入该参数重试。

-- resize_factor 修改缩放参数以获得较低分辨率的视频。因为原模型是在低分辨率人脸数据上训练的,因此 720p 视频可能比 1080p 视频获得更好更逼真的效果。

还有一些参数可以参考 inference.py 的 args parse 模块,这里有完整的参数解析。

2.Wave2lip 运行

为了方便,我们将官方给的示例调整一下:

#!/bin/bash

ckpt='/data2/wav2lip/checkpoints/wav2lip.pth'
video='/data2/wav2lip/video/zgl.jpg'
audio='/data2/wav2lip/mp3/AutumnWillNotComeBack.mp3'

python inference.py --checkpoint_path $ckpt --face $video --audio $audio

◆ 视频选择

为了简化流程,我们使用单一人物图像的 jpeg,当然上传人物的 video.mp4 也可以,但是需要保证每一帧都可以获取 face-detect 的结果,否则程序会异常报错。

◆ 音频选择

AutumnWillNotComeBack.mp3,相信 90 后的你一定不会陌生,没错这就是 《秋天不回来》!

​运行命令后会显示音频的相关信息,可以看到原始的 mp4 格式已经处理为 wav,处理命令为:

command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(args.audio, 'temp/result.avi', args.outfile)
subprocess.call(command, shell=platform.system() != 'Windows')

◆ 输出结果

输出会通过 cv2.VideoWriter 写入对应的 output 目录,下面为生成视频的相关信息:

结合前面的介绍的 Nginx 服务,我们可以直接在本机查看服务器上生成的视频,非常的方便。

Nginx 服务搭建:  Nginx - 本机读取服务器图像、视频

3.GFP-GAN 修复

由于我们原图的画质较低,导致后续生成的视频也比较模糊。最简单的优化方案是在原始图片、视频的选择上选取更加清晰的版本。不过即便如此嘴部动作也会有一些模型和重影,下面我们基于 GFP-GAN 对视频进行清晰度重建。

Video2PNG

通过 VideoFileClip 库处理视频,共获取 FPS x Duration/s 帧图像。

def video_to_png(_file_name, _output):
    from moviepy.editor import VideoFileClip

    # Load your gif
    clip = VideoFileClip(_file_name)
    print(f'Duration: {clip.duration} FPS: {clip.fps}')

    # Loop over clip frames
    for i, frame in enumerate(clip.iter_frames()):
        from PIL import Image
        img = Image.fromarray(frame)
        img.save(f'{_output}/frame_{i}.png')

GFP-GAN ReBuild

GFP-GAN 服务搭建: Python - GFPGAN + MoviePy 提高人物视频画质

python inference_gfpgan.py -i inputs/gif_imgs -o results -v 1.3 -s 2

原视频 FPS = 25,共 2 min = 120 s,所以修复后生成 3k 帧图像。 

PNG2Video

将上述 3000 帧图像的地址构造生成 image_files 并生成 ImageSequenceClip 对象,通过 set_audio 的方法匹配 Wave2lip 生成视频的 Audio,最终 write_videofile 输出 mp4。

def png_to_mp4(_file_name, input):

    # Load your gif
    clip = VideoFileClip(_file_name)
    print(f'Duration: {clip.duration} FPS: {clip.fps}')

    # Loop over clip frames
    image_files = get_images(_file_name, input)
    new_clip = ImageSequenceClip(image_files, fps=clip.fps)
    # 设置音频剪辑到图像序列剪辑
    image_sequence = new_clip.set_audio(clip.audio)

    # 导出最终视频
    image_sequence.write_videofile('output_video.mp4', codec='libx264', audio_codec='aac', fps=clip.fps)

可以看到修复后的视频,人物的脸部和嘴部轮廓形状也更加清晰:

五.总结

通过上面一系列的操作,我们最终实现了  Wave2lip x GFP-GAN 的操作。不过 2min 的视频里,人物的嘴型还是有飘忽不定和重影的问题,一方面可能是由于原图、视频的画质质量过低导致;其次古装人物的胡须与训练集中欧美人的脸部造型差异可能也是原因之一,后续博主也会按 Github 给出的建议,添加 --nosmooth 参数看看是否有好转。有问题欢迎大家评论区交流讨论 ~ 👍

Tips:

Wave2lip 和 GFP-GAN 对应两套 conda 的 python 环境,部署时需要区分。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/170311.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

工具及方法 - 多邻国: Duolingo

网站&#xff1a;Duolingo 有iOS和Android应用&#xff0c;在App Store和Google Play上都能下载。也可以使用网页版。我就在iOS上安装了付费版&#xff0c;为了小朋友学习英语&#xff0c;一年的费用&#xffe5;588。 目前学习中的课程是英语、日语和粤语。英语是小学课程&a…

单/三相dq解耦控制与特定次谐波抑制

1. 单相整流器dq坐标系下建模 单相整流器的拓扑如图所示&#xff0c;可知 u a b u s − L d i s d t − R i s {u_{ab}} {u_{s}} - L\frac{{d{i_s}}}{{dt}} - R{i_s} uab​us​−Ldtdis​​−Ris​。   将电压和电流写成dq的形式。 { u s U s m sin ⁡ ( ω t ) i s I …

c语言从入门到实战——回调函数与qsort的讲解和模拟实现

回调函数与qsort的讲解和模拟实现 前言1. 回调函数是什么&#xff1f;2. qsort2.1 使用qsort函数排序整型数据2.2 使用qsort排序结构数据 3. qsort函数的模拟实现 前言 回调函数是一个函数&#xff0c;它作为参数传递给另一个函数&#xff0c;并且能够在该函数内部被调用。在C…

代码随想录算法训练营第六十天丨 单调栈03

84.柱状图中最大的矩形 思路 单调栈 本地单调栈的解法和接雨水的题目是遥相呼应的。 为什么这么说呢&#xff0c;42. 接雨水 (opens new window)是找每个柱子左右两边第一个大于该柱子高度的柱子&#xff0c;而本题是找每个柱子左右两边第一个小于该柱子的柱子。 这里就涉…

腾讯云轻量数据库1核1G性能测评、租用费用和详细介绍

腾讯云轻量数据库服务采用腾讯云自研的新一代云原生数据库 TDSQL-C&#xff0c;融合了传统数据库、云计算与新硬件技术的优势&#xff0c;100%兼容 MySQL&#xff0c;实现超百万级 QPS 的高吞吐&#xff0c;128TB 海量分布式智能存储&#xff0c;保障数据安全可靠。腾讯云百科t…

#gStore-weekly | gBuilder功能详解之数据入库、定时任务、抽取日志、数据库管理等

gBuilder提供了一系列强大的功能模块&#xff0c;涵盖了数据入库、定时任务、抽取日志以及数据库管理与查询等关键领域。用户可以轻松地进行数据库的创建、定时任务的设定和执行、抽取日志的管理以及数据库的导入、导出、备份和还原操作。此外&#xff0c;高效的数据库查询功能…

微服务学习|Nacos配置管理:统一配置管理、配置热更新、配置共享、搭建Nacos集群

统一配置管理 在微服务当中&#xff0c;提供一个配置中心来将一些配置提取出来&#xff0c;进行统一的使用&#xff0c;Nacos既可以充当注册中心&#xff0c;也提供配置中心的功能。 1.在Nacos中添加配置文件 在Nacos控制台&#xff0c;我们可以在配置管理中&#xff0c;添加…

常见树种(贵州省):009楠木、樟木、桂木种类

摘要&#xff1a;本专栏树种介绍图片来源于PPBC中国植物图像库&#xff08;下附网址&#xff09;&#xff0c;本文整理仅做交流学习使用&#xff0c;同时便于查找&#xff0c;如有侵权请联系删除。 图片网址&#xff1a;PPBC中国植物图像库——最大的植物分类图片库 一、楠木 …

【腾讯云 HAI域探秘】高性能服务器引领AI革新浪潮:从AI绘画、知识问答到PyTorch图像分类、视频检测的全方位探索

目录 1 HAI&#xff08;高性能应用服务&#xff09;简介2 HAI的应用场景2.1 HAI在AI作画中的灵活性与效率2.2 深入探索LLM语言模型的应用与性能2.3 HAI支持的AI模型开发环境与工具 3 基于stable difussio的AI 绘画应用实践3.1 使用AI模型中的stable diffusion模型服务3.2 设置和…

算法 LeetCode 题解 | 两个数组的交集

大家好&#xff0c;我是木川 一、题目描述 给定两个数组 nums1 和 nums2 &#xff0c;返回 它们的交集 。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序 。 示例 1&#xff1a; 输入&#xff1a;nums1 [1,2,2,1], nums2 [2,2] 输出&#xff1a;[2] 示例…

SpringCloud 微服务全栈体系(十五)

第十一章 分布式搜索引擎 elasticsearch 五、RestClient 操作文档 为了与索引库操作分离&#xff0c;再次参加一个测试类&#xff0c;做两件事情&#xff1a; 初始化 RestHighLevelClient酒店数据在数据库&#xff0c;需要利用 IHotelService 去查询&#xff0c;所以注入这个接…

48. 旋转图像

给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在 原地 旋转图像&#xff0c;这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,2,3],[4,5,6],[7,8,9]] 输出&…

python实现炫酷的屏幕保护程序

shigen日更文章的博客写手&#xff0c;擅长Java、python、vue、shell等编程语言和各种应用程序、脚本的开发。记录成长&#xff0c;分享认知&#xff0c;留住感动。 上次的文章如何实现一个下班倒计时程序的阅读量很高&#xff0c;觉得也很实用酷炫&#xff0c;下边是昨天的体验…

24 - 内存持续上升,我该如何排查问题?

我想你肯定遇到过内存溢出&#xff0c;或是内存使用率过高的问题。碰到内存持续上升的情况&#xff0c;其实我们很难从业务日志中查看到具体的问题&#xff0c;那么面对多个进程以及大量业务线程&#xff0c;我们该如何精准地找到背后的原因呢&#xff1f; 1、常用的监控和诊断…

机器人制作开源方案 | 智能照科植物花架

作者&#xff1a;付菲菲、于海鑫、王子敏单位&#xff1a;黑河学院指导老师&#xff1a;索向峰、李岩 1. 概述 1.1设计背景​ 随着时代的发展&#xff0c;城市化脚步加快、城市人口密度越来越大、城市生活节奏快压力大作息难成规律。城市建筑建筑面积迅速增加、而绿…

Linux shell编程学习笔记28:脚本调试 set命令

0 引入 在Linux Shell 脚本编程的过程中&#xff0c;编写简单功能的脚本&#xff0c;代码不多&#xff0c;一般阅读起来没什么难度&#xff0c;有问题也比较有查出原因和修正。但是当脚本要实现的功能较多&#xff0c;代码变得较为复杂时&#xff0c;阅读起来就不那么容易看明…

Bean实例化的基本流程

Spring容器在进行初始化时&#xff0c;会将xml配置的<bean>的信息封装成一个BeanDefintion对象&#xff0c;所有的BeanDefintion存储到BeanDefintionMap的Map集合中去&#xff0c;Spring框架对该Map进行遍历&#xff0c;使用反射创建Bean实例对象&#xff0c;创建好的Bea…

以“防方视角”观Shiro反序列化漏洞

为方便您的阅读&#xff0c;可点击下方蓝色字体&#xff0c;进行跳转↓↓↓ 01 案例概述02 攻击路径03 防方思路 01 案例概述 这篇文章来自微信公众号“潇湘信安”&#xff0c;记录的某师傅如何发现、利用Shiro反序列化漏洞&#xff0c;又是怎样绕过火绒安全防护实现文件落地、…

Leetcode刷题详解——删除并获得点数

1. 题目链接&#xff1a;740. 删除并获得点数 2. 题目描述&#xff1a; 给你一个整数数组 nums &#xff0c;你可以对它进行一些操作。 每次操作中&#xff0c;选择任意一个 nums[i] &#xff0c;删除它并获得 nums[i] 的点数。之后&#xff0c;你必须删除 所有 等于 nums[i] …

github 开源whisper ros llm

GitHub - openai/whisper: Robust Speech Recognition via Large-Scale Weak Supervision openai whisper ROS LLM https://github.com/Auromix/ROS-LLM/tree/ros2-humble/llm_input