基于野狗算法优化概率神经网络PNN的分类预测 - 附代码

基于野狗算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于野狗算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于野狗优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用野狗算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于野狗优化的PNN网络

野狗算法原理请参考:https://blog.csdn.net/u011835903/article/details/122368818

利用野狗算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

野狗参数设置如下:

%% 野狗参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述

从结果来看,野狗-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/170196.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【教3妹学编辑-mysql】详解数据库三大范式

什么是范式 简单地理解就是:数据库设计时遵循的规范 三大范式 数据库三大范式包含:1、第一范式(1NF);2、第二范式(2NF);3、第三范式(3NF)。其中,第一范式(1NF)的要求是属性不可分割,第二范式(2NF)的要求是…

Java基础-----正则表达式

文章目录 1.简介2.目的3.学习网站4.常用匹配字符5.String类中用到正则表达式的方法 1.简介 又叫做规则表达式。是一种文本模式,包括普通字符和特殊字符(元字符)。正则使用单个字符来描述、匹配一系列某个句法规则的字符串,通常用…

机器学习笔记 - Ocr识别中的CTC算法原理概述

一、文字识别 在文本检测步骤中,分割出了文本区域。现在需要识别这些片段中存在哪些文本。 机器学习笔记 - Ocr识别中的文本检测EAST网络概述-CSDN博客文章浏览阅读300次。在 EAST 网络的这个分支中,它合并了 VGG16 网络不同层的特征输出。现在,该层之后的特征大小将等于 p…

《崩坏:星穹铁道》1.5仙舟罗浮-绥园全宝箱攻略

大家好,我是闲游盒小盒子,本篇来说下崩铁1.5版本仙舟罗浮-绥园的全宝箱攻略,共有19个宝箱加1个扑满;做完间章可获取前14个普通宝箱加2个精英怪宝箱,以及1个扑满;完成《狐斋志异》全任务可获得另外3个宝箱。…

Wireshark抓包:理解TCP三次握手和四次挥手过程

TCP是一种面向连接、端到端可靠的协议,它被设计用于在互联网上传输数据和确保成功传递数据和消息。本节来介绍一下TCP中的三次握手和四次挥手。 文章目录 1 TCP头部格式2 wireshark抓包分析2.1 SEQ和ACK2.2 三次握手2.3 四次挥手 3 程序 1 TCP头部格式 TCP头部占据…

Unity--互动组件(Scrollbar)||Unity--互动组件(DropDown )

此组件中的,交互,过渡,导航与文章(Unity--互动组件(Button))中的介绍如同; handle rect:(父节点矩形) 用于控件的滑动“句柄”部分的图形&#xf…

Apache Airflow (十二) :PythonOperator

🏡 个人主页:IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 🚩 私聊博主:加入大数据技术讨论群聊,获取更多大数据资料。 🔔 博主个人B栈地址:豹哥教你大数据的个人空间-豹…

VMware创建Linux虚拟机之(三)Hadoop安装与配置及搭建集群

Hello,world! 🐒本篇博客使用到的工具有:VMware16 ,Xftp7 若不熟悉操作命令,推荐使用带GUI页面的CentOS7虚拟机 我将使用带GUI页面的虚拟机演示 虚拟机(Virtual Machine) 指通过…

使用Python的turtle模块绘制玫瑰花图案(含详细Python代码与注释)

1.1引言 turtle模块是Python的标准库之一,它提供了一个绘图板,让我们可以在屏幕上绘制各种图形。通过使用turtle,我们可以创建花朵、叶子、复杂的图案等等。本博客将介绍如何使用turtle模块实现绘制图形的过程,并展示最终结果。 …

matlab 坡度滤波算法地面分割

目录 一、算法原理1、实现流程2、参考文献二、代码实现三、结果展示四、测试数据一、算法原理 1、实现流程 1、格网示意图 2、计算格网行列数 公式中的特殊符号为向上取整,

从0开始学习JavaScript--JavaScript使用Promise

JavaScript中的异步编程一直是开发中的重要话题。传统的回调函数带来了回调地狱和代码可读性的问题。为了解决这些问题,ES6引入了Promise,一种更现代、更灵活的异步编程解决方案。本文将深入探讨JavaScript中如何使用Promise,通过丰富的示例代…

C++二分算法:找到最接近目标值的函数值

本文涉及的基础知识点 二分查找算法合集 题目 Winston 构造了一个如上所示的函数 func 。他有一个整数数组 arr 和一个整数 target ,他想找到让 |func(arr, l, r) - target| 最小的 l 和 r 。 请你返回 |func(arr, l, r) - target| 的最小值。 请注意&#xff0c…

读像火箭科学家一样思考笔记04_第一性原理(下)

1. 来自无形规则的阻力 1.1. 无形规则 1.1.1. 僵化成规则的不必要习惯和行为 1.1.2. 不像有形的书面规则 1.1.2.1. 书面规则出现在标准操作流程中,可以修改或删除 1.1.3. 成文的规则可能会抗拒变革,但无形规则却更加顽固 1.1.4. 我们为强加在自己身…

华为---OSPF网络虚连接(Virtual Link)简介及示例配置

OSPF网络虚连接(Virtual Link)简介 为了避免区域间的环路,OSPF规定不允许直接在两个非骨干区域之间发布路由信息,只允许在一个区域内部或者在骨干区域和非骨干区域之间发布路由信息。因此,每个ABR都必须连接到骨干区域…

【计算机网络笔记】路由算法之链路状态路由算法

系列文章目录 什么是计算机网络? 什么是网络协议? 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能(1)——速率、带宽、延迟 计算机网络性能(2)…

CTF-PWN-小tips

文章目录 overflowscanfgetreadstrcpystrcat Find string in gdbgdbgdb peda Binary ServiceFind specific function offset in libc手工自动 Find /bin/sh or sh in library手动自动 Leak stack addressFork problem in gdbSecret of a mysterious section - .tlsPredictable …

手机照片误删解决方法分享

几个要点 1.检查回收站:一些情况下,我们会在删除文件时将它们移动到回收站中,查看回收站中是否有被删除的照片,这样可以直接恢复文件。 2.使用手机自带的恢复功能:一些手机自带照片恢复功能,可尝试在相册…

【云栖 2023】张治国:MaxCompute 架构升级及开放性解读

云布道师 本文根据 2023 云栖大会演讲实录整理而成,演讲信息如下 演讲人:张治国|阿里云智能计算平台研究员、阿里云 MaxCompute 负责人 演讲主题:MaxCompute架构升级及开放性解读 活动:2023云栖大会 MaxCompute 发展经历了三个阶…

适合您的智能手机的 7 款优秀手机数据恢复软件分享

如今,我们做什么都用手机;从拍照到录音,甚至作为 MP3 播放器,我们已经对手机变得非常依恋。这导致我们在手机上留下了很多珍贵的回忆。 不幸的是,我们有可能会丢失手机上的部分甚至全部数据。幸运的是,这不…

使用大语言模型 LLM 做文本分析

本文主要分享 传统聚类算法 LLM与嵌入算法 嵌入算法聚类 LLM的其他用法 聚类是一种无监督机器学习技术,旨在根据相似的数据点的特征将其分组在一起。使用聚类成簇,有助于解决各种问题,例如客户细分、异常检测和文本分类等。尽管传统的聚…