猫12分类:使用yolov5训练检测模型

前言:

      在使用yolov5之前,尝试过到百度飞桨平台(小白不建议)、AutoDL平台(这个比较友好,经济实惠)训练模型。但还是没有本地训练模型来的舒服。因此远程了一台学校电脑来搭建自己的检测模型。配置嘛!勉强过的去。毕竟训练的模型也不是很大。本来想着也想搞一些nb轰轰的模型,但想想还是算了,一是经济(云平台,只想白嫖),二是时间(准备那些数据集就非常浪费时间,自己昨天制作的那150关于猫的label就标了三四个小时,还标错了,导致训练时全部返工,真的烦),三是学校电脑配置还是不咋行,训练完估计模型精度也就那样子。想想嘛!还是根据喜好训练一个模型吧!

使用yolov5进行本地部署的原因:

推荐使用YOLOv5训练检测模型有以下几个原因:
1. 高性能:YOLOv5在检测任务上具有出色的性能。相比于之前的版本,YOLOv5采用了更深的网络结构和更多的特征层,可以提供更准确的检测结果,并且在速度上也有所提升。
2. 简单易用:YOLOv5提供了一个简单的训练和测试框架,使得用户可以轻松地进行模型的训练和评估。用户只需要准备好训练数据,并进行简单的配置,就可以开始训练模型。
3. 多平台支持:YOLOv5支持多种平台,包括CPU、GPU和TPU等。这使得用户可以根据自己的需求选择合适的硬件平台来进行训练和推理。
4. 开源社区支持:YOLOv5是一个开源项目,有一个庞大的开源社区支持。这意味着用户可以从社区中获取到丰富的资源、教程和解决方案,以帮助他们更好地使用和优化YOLOv5模型。
综上所述,YOLOv5是一个性能优秀、简单易用、多平台支持且有开源社区支持的检测模型,因此推荐使用它进行训练和应用。

数据预处理:

xml文件转txt文件

在使用yolov5训练模型之前,需要将label目录下的xml文件转为txt文件。

转换代码如下

import os
import xml.etree.ElementTree as ET

import os
import xml.etree.ElementTree as ET

def convert_xml_to_yolov5_label(xml_file, txt_file):
  tree = ET.parse(xml_file)
  root = tree.getroot()

  with open(txt_file, 'w') as f:
    for obj in root.findall('outputs/object/item'):
      class_name = obj.find('name').text
      bbox = obj.find('bndbox')
      x_min = float(bbox.find('xmin').text)
      y_min = float(bbox.find('ymin').text)
      x_max = float(bbox.find('xmax').text)
      y_max = float(bbox.find('ymax').text)

      width = x_max - x_min
      height = y_max - y_min
      x_center = x_min + width / 2
      y_center = y_min + height / 2

      # 将坐标归一化到0-1之间
      width /= float(root.find('size/width').text)
      height /= float(root.find('size/height').text)
      x_center /= float(root.find('size/width').text)
      y_center /= float(root.find('size/height').text)

      f.write(f"{class_name} {x_center} {y_center} {width} {height}\n")

def batch_convert_xml_to_yolov5_label(xml_folder, txt_folder):
  if not os.path.exists(txt_folder):
    os.makedirs(txt_folder)

  for file in os.listdir(xml_folder):
    if file.endswith('.xml'):
      xml_file = os.path.join(xml_folder, file)
      txt_file = os.path.join(txt_folder, file.replace('.xml', '.txt'))
      convert_xml_to_yolov5_label(xml_file, txt_file)

# 示例用法
xml_folder = r'C:\Users\1\Desktop\images\labelsxml'
txt_folder = r'C:\Users\1\Desktop\images\labels'
batch_convert_xml_to_yolov5_label(xml_folder, txt_folder)

划分训练集和验证集

因为数据集比较少,所以验证集部分直接使用训练集来做验证。

数据目录结构如下:

编写data目录yaml文件(索引文件,加载数据的访问路径以及检测类别)

# 数据集根路径
path: C:\Users\1\Desktop\catmaoxunlian\catdata    
#训练集
train: images/train
#验证集
val: images/val

nc: 1
# Classes
names: ['cat']

示例编辑如下

编写models目录下的yum文件

模型训练

找到yolov5目录下的train.py,加载数据集yaml文件和models云文件,以及预训练模型,

详细教程请找我的另一篇博客(懒得再写一遍)基于yolov5的NEU-NET产品缺陷目标检测_map50_挽风起苍岚的博客-CSDN博客

基本上检测出来了,不过精度不是很高,精度不高的原因,主要时数据集太少(猫的类别很多),训练次数不是很够。

模型推理

python detect.py --weights yolov5s.pt --source 0                               # webcam
                                               img.jpg                         # image
                                               vid.mp4                         # video
                                               screen                          # screenshot
                                               path/                           # directory
                                               list.txt                        # list of images
                                               list.streams                    # list of streams
                                               'path/*.jpg'                    # glob
                                               'https://youtu.be/LNwODJXcvt4'  # YouTube
                                               'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

测试图片如下:

模型推理后的结果

额,模型精度有待加强,不过先这样吧!勉勉强强,哈哈。。。

后续内容

训练一个猫12分类的模型;

部署到云平台,开放一个接口调用模型API;

然后结合猫目标检测模型制作一个C#小程序。

增加一个GPT功能等等吧!

....

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/169822.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

.NET 8.0 AOT 教程 和使用 和 .NET ORM 操作

NET AOT编译是一种.NET运行时的编译方式,它与传统的JIT编译方式不同。在传统的JIT编译中,.NET应用程序的代码在运行时才会被编译成本地机器码,而在AOT编译中,代码在运行之前就被提前编译成本地机器码。这样可以在代码运行的时候不…

Docker搭建Redis集群

Docker搭建Redis集群 创建一个专属redis的网络 docker network create redis --subnet 172.38.0.0/16通过shell脚本创建并启动6个redis服务 #通过脚本一次创建6个redis配置 for port in $(seq 1 6); \ do \ mkdir -p /mydata/redis/node-${port}/conf touch /mydata/redis/n…

CentOS7安装部署Kafka with KRaft

文章目录 CentOS7安装部署Kafka with KRaft一、前言1.简介2.架构3.环境 二、正文1.部署服务器2.基础环境1)主机名2)Hosts文件3)关闭防火墙4)JDK 安装部署 3.单机部署1)下载软件包2)修改配置文件3&#xff0…

VS2019编译安装GDAL(C++)程序库

一、GDAL简介 GDAL,全称Geospatial Data Abstraction Library,即地理空间数据抽象库,是一个在X/MIT许可协议下读写空间数据的开源库,可以通过命令行工具来进行数据的转换和处理。而在调用中我们常用的OGR(OpenGIS Simp…

文件上传漏洞(CVE-2022-23043)

简介 CVE-2022-23043是一个与Zenario CMS 9.2文件上传漏洞相关的安全漏洞。该漏洞被定义为文件的不加限制上传,攻击者可以利用这个漏洞上传webshell以执行任意命令。利用这个漏洞的攻击者暂无特定情况。要利用此漏洞,攻击者首先需要访问Zenario CMS的管…

gin相关操作--一起学习921190764

gin官方文档 https://gin-gonic.com/docs/quickstart/1. 安装 go get -u github.com/gin-gonic/ginhttps://github.com/gin-gonic/gin简单入门 package mainimport ("github.com/gin-gonic/gin""net/http" )func pong(c *gin.Context) {//c.JSON(http.S…

Redis高级特性和应用(发布 订阅、Stream)

目录 发布和订阅 操作命令 发布消息 订阅消息 查询订阅情况 查看活跃的频道 查看频道订阅数 使用场景和缺点 Redis Stream Stream总述 常用操作命令 生产端 消费端 单消费者 消费组 创建消费组 消息消费 在Redis中实现消息队列 基于pub/sub 基于Stream Re…

Three.js相机模拟

有没有想过如何在 3D Web 应用程序中模拟物理相机? 在这篇博文中,我将向你展示如何使用 Three.js和 OpenCV 来完成此操作。 我们将从模拟针孔相机模型开始,然后添加真实的镜头畸变。 具体来说,我们将仔细研究 OpenCV 的两个失真模型,并使用后处理着色器复制它们。 拥有逼…

MySQL 备份和恢复

目录 一.MySQL数据库的备份的分类 1.1.数据备份的重要性 1.2.数据库备份的分类和备份策略 1.3.常见的备份方法 二.MySQL完全备份 2.1.什么是完全备份 2.2.完全备份的优缺点 2.3.实现物理冷备份与恢复 1)实现流程 2)前置准备 3)实现…

nodejs微信小程序 +python+PHP+图书销售管理系统的设计与实现-网上书店-图书商城-计算机毕业设计

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…

俄罗斯方块游戏制作

创建包和文件夹 1.创建小方块类 package eluosifangkuai; import java.awt.image.BufferedImage; import java.util.Objects;/*** author xiaoZhao* date 2022/5/7* describe* 小方块类* 方法: 左移、右移、下落*/ public class Cell {// 行private int row;//…

线上bug-接口速度慢

👽System.out.println(“👋🏼嗨,大家好,我是代码不会敲的小符,双非大四,Java实习中…”); 📚System.out.println(“🎈如果文章中有错误的地方,恳请大家指正&a…

【opencv】debug报错HEAP CORRUPTION DETECTED

运行至第一句涉及矩阵运算的代码(如cv::multiply)时报错 HEAP CORRUPTION DETECTED: after Normal block (#45034) at 0x000001BDC586F0E0. CRT detected that the application wrote to memory after end of heap buffer.release下不会报错&#xff0…

go语言学习-go环境安装

1、安装Go 1.1 下载安装 go官网 找对应电脑的版本进行安装即可。 点击安装包,直接下一步下一步即可,安装目录可以自行设置一下。 1.2 验证 windows通过cmd验证。 linux或者mac可以通过自带终端执行测试。 2、配置环境变量 2.1 windows 找到系统…

PostgreSQL数据库结合内网穿透实现公网远程连接

文章目录 前言1. 安装postgreSQL2. 本地连接postgreSQL3. Windows 安装 cpolar4. 配置postgreSQL公网地址5. 公网postgreSQL访问6. 固定连接公网地址7. postgreSQL固定地址连接测试 前言 PostgreSQL是一个功能非常强大的关系型数据库管理系统(RDBMS),下…

axios的原理及实现一个简易版axios

面试官:你了解axios的原理吗?有看过它的源码吗? 一、axios的使用 关于axios的基本使用,上篇文章已经有所涉及,这里再稍微回顾下: 发送请求 import axios from axios;axios(config) // 直接传入配置 axio…

8 Redis与Lua

LUA脚本语言是C开发的,类似存储过程,是为了实现完整的原子性操作,可以用来补充redis弱事务的缺点. 1、LUA脚本的好处 2、Lua脚本限流实战 支持分布式 import org.springframework.core.io.ClassPathResource; import org.springframework.data.redis…

C练习题_14

一、单项选择题(本大题共 20小题,每小题 2分,共 40分。在每小题给出的四个备选项中,选出一个正确的答案,并将所选项前的字母填写在答题纸的相应位置上。) 以下叙述不正确的是() A.一个C源程序可…

桥接模式学习

目录 背景过程总结 背景 现在要解决源码阶段的继承关系,无法在运行时改变从父类继承的实现。这里用的是手机品牌还有手机中的app,这种问题如何进行解决呢。这就要引入一个模式:桥接模式 过程 1、原则:合成/复用原则 &#xff1…

(二)汇编语句组成

一个完整的 RISC-V 汇编程序有多条 语句(statement) 组成。 一条典型的 RISC-V 汇编 语句 由 3 部分组成: 1.标签 List item label(标签): 标签是标识程序位置的记号。通常定义一个名称然后加上":"后缀。…