【Redis】Redis分布式锁的10个坑

文章目录

  • 前言
  • 1. 非原子操作(setnx + expire)
  • 2.被别的客户端请求覆盖( setnx + value为过期时间)
  • 3. 忘记设置过期时间
  • 4. 业务处理完,忘记释放锁
  • 5. B的锁被A给释放了
  • 6. 释放锁时,不是原子性
  • 7. 锁过期释放,业务没执行完
  • 8. Redis分布式锁和@transactional一起使用失效
  • 9.锁可重入
  • 10.Redis主从复制导致的坑
  • 参考与感谢
  • 参考资料

前言

日常开发中,经常会碰到秒杀抢购等业务。为了避免并发请求造成的库存超卖等问题,我们一般会用到Redis分布式锁。但是使用Redis分布式锁,很容易踩坑哦~ 本文将给大家分析阐述,Redis分布式锁的10个坑~

1. 非原子操作(setnx + expire)

一说到实现Redis的分布式锁,很多小伙伴马上就会想到setnx+ expire命令。也就是说,先用setnx来抢锁,如果抢到之后,再用expire给锁设置一个过期时间。

伪代码如下:

if(jedis.setnx(lock_key,lock_value) == 1{ //加锁
    jedis.expire(lock_key,timeout); //设置过期时间
    doBusiness //业务逻辑处理
}

这块代码是有坑的,因为setnx和expire两个命令是分开写的,并不是原子操作!如果刚要执行完setnx加锁,正要执行expire设置过期时间时,进程crash或者要重启维护了,那么这个锁就“长生不老”了,别的线程永远获取不到锁啦。

2.被别的客户端请求覆盖( setnx + value为过期时间)

为了解决:发生异常时,锁得不到释放的问题。有小伙伴提出,可以把过期时间放到setnx的value里面。如果加锁失败,再拿出value值和当前系统时间校验一下是否过期即可。伪代码实现如下:

long expireTime = System.currentTimeMillis() + timeout; //系统时间+设置的超时时间
String expireTimeStr = String.valueOf(expireTime); //转化为String字符串

// 如果当前锁不存在,返回加锁成功
if (jedis.setnx(lock_key, expireTimeStr) == 1) {
        return true;
} 

// 如果锁已经存在,获取锁的过期时间
String oldExpireTimreStr = jedis.get(lock_key);

// 如果获取到的老的预期过期时间,小于系统当前时间,表示已经过期了
if (oldExpireTimreStr != null && Long.parseLong(oldExpireTimreStr) < System.currentTimeMillis()) {

     //锁已过期,获取上一个锁的过期时间,并设置现在锁的过期时间(不了解redis的getSet命令的小伙伴,可以去官网看下哈)
    String oldValueStr = jedis.getSet(lock_key, expireTimeStr);
    
    if (oldValueStr != null && oldValueStr.equals(oldExpireTimreStr)) {
      //考虑多线程并发的情况,只有一个线程的设置值和当前值相同,它才可以加锁
      return true;
    }
}
        
//其他情况,均返回加锁失败
return false;
}

这种实现的方案,也是有坑的:如果锁过期的时候,并发多个客户端同时请求过来,都执行jedis.getSet(),最终只能有一个客户端加锁成功,但是该客户端锁的过期时间,可能被别的客户端覆盖。

3. 忘记设置过期时间

之前review代码的时候,看到这样实现的分布式锁,伪代码:

try{
  if(jedis.setnx(lock_key,lock_value) == 1){//加锁
     doBusiness //业务逻辑处理
     return true; //加锁成功,处理完业务逻辑返回
  }
  return false; //加锁失败
} finally {
    unlock(lockKey);- //释放锁
} 

这块有什么问题呢?是的,忘记设置过期时间了。如果程序在运行期间,机器突然挂了,代码层面没有走到finally代码块,即在宕机前,锁并没有被删除掉,这样的话,就没办法保证解锁,所以这里需要给lockKey加一个过期时间。注意哈,使用分布式锁,一定要设置过期时间哈。

4. 业务处理完,忘记释放锁

很多小伙伴,会使用Redis的set指令扩展参数来实现分布式锁。

set指令扩展参数:SET key value[EX seconds][PX milliseconds][NX|XX]

- NX :表示key不存在的时候,才能set成功,也即保证只有第一个客户端请求才能获得锁,
  而其他客户端请求只能等其释放锁,才能获取。
- EX seconds :设定key的过期时间,时间单位是秒。
- PX milliseconds: 设定key的过期时间,单位为毫秒
- XX: 仅当key存在时设置值

小伙伴会写出如下伪代码:

if(jedis.set(lockKey, requestId, "NX", "PX", expireTime)==1){ //加锁
   doBusiness //业务逻辑处理
   return true; //加锁成功,处理完业务逻辑返回
}
return false; //加锁失败

这块伪代码,初看觉得没啥问题,但是细想,不太对呀。因为忘记释放锁了!如果每次加锁成功,都要等到超时时间才释放锁,是会有问题的。这样程序不高效,应当每次处理完业务逻辑,都要释放锁。

正例如下:

try{
  if(jedis.set(lockKey, requestId, "NX", "PX", expireTime)==1){//加锁
     doBusiness //业务逻辑处理
     return true; //加锁成功,处理完业务逻辑返回
  }
  return false; //加锁失败
} finally {
    unlock(lockKey);- //释放锁
}  

5. B的锁被A给释放了

我们来看下这块伪代码:

try{
  if(jedis.set(lockKey, requestId, "NX", "PX",expireTime)==1){//加锁
     doBusiness //业务逻辑处理
     return true; //加锁成功,处理完业务逻辑返回
  }
  return false; //加锁失败
} finally {
    unlock(lockKey); //释放锁
}  

大家觉得会有哪些坑呢?

假设在这样的并发场景下:A、B两个线程来尝试给Redis的keylockKey加锁,A线程先拿到锁(假如锁超时时间是3秒后过期)。如果线程A执行的业务逻辑很耗时,超过了3秒还是没有执行完。这时候,Redis会自动释放lockKey锁。刚好这时,线程B过来了,它就能抢到锁了,开始执行它的业务逻辑,恰好这时,线程A执行完逻辑,去释放锁的时候,它就把B的锁给释放掉了。

正确的方式应该是,在用set扩展参数加锁时,放多一个这个线程请求的唯一标记,比如requestId,然后释放锁的时候,判断一下是不是刚刚的请求。

try{
  if(jedis.set(lockKey, requestId, "NX", "PX",expireTime)==1){//加锁
     doBusiness //业务逻辑处理
     return true; //加锁成功,处理完业务逻辑返回
  }
  return false; //加锁失败
} finally {
    if (requestId.equals(jedis.get(lockKey))) { //判断一下是不是自己的requestId
      unlock(lockKey);//释放锁
    }   
}  

6. 释放锁时,不是原子性

以上的这块代码,还是有坑:

   if (requestId.equals(jedis.get(lockKey))) { //判断一下是不是自己的requestId
      unlock(lockKey);//释放锁
    }   

因为判断是不是当前线程加的锁和释放锁不是一个原子操作。如果调用unlock(lockKey)释放锁的时候,锁已经过期,所以这把锁已经可能已经不属于当前客户端,会解除他人加的锁。

因此,这个坑就是:判断和删除是两个操作,不是原子的,有一致性问题。释放锁必须保证原子性,可以使用Redis+Lua脚本来完成,类似Lua脚本如下:

if redis.call('get',KEYS[1]) == ARGV[1] then 
   return redis.call('del',KEYS[1]) 
else
   return 0
end;  

7. 锁过期释放,业务没执行完

加锁后,如果超时了,Redis会自动释放清除锁,这样有可能业务还没处理完,锁就提前释放了。怎么办呢?

有些小伙伴认为,稍微把锁过期时间设置长一些就可以啦。其实我们设想一下,是否可以给获得锁的线程,开启一个定时守护线程,每隔一段时间检查锁是否还存在,存在则对锁的过期时间延长,防止锁过期提前释放。

当前开源框架Redisson解决了这个问题。我们一起来看下Redisson底层原理图吧:
在这里插入图片描述

只要线程一加锁成功,就会启动一个watch dog看门狗,它是一个后台线程,会每隔10秒检查一下,如果线程一还持有锁,那么就会不断的延长锁key的生存时间。因此,Redisson就是使用Redisson解决了锁过期释放,业务没执行完问题。

8. Redis分布式锁和@transactional一起使用失效

大家看下这块伪代码:

@Transactional
public void updateDB(int lockKey) {
  boolean lockFlag = redisLock.lock(lockKey);
  if (!lockFlag) {
    throw new RuntimeException(“请稍后再试”);
  }
   doBusiness //业务逻辑处理
   redisLock.unlock(lockKey);
}

在事务中,使用了Redis分布式锁.这个方法一旦执行,事务生效,接着就Redis分布式锁生效,代码执行完后,先释放Redis分布式锁,然后再提交事务数据,最后事务结束。在这个过程中,事务没有提交之前,分布式锁已经被释放,导致分布式锁失效

这是因为:

spring的Aop,会在updateDB方法之前开启事务,之后再加锁,当锁住的代码执行完成后,再提交事务,因此锁住的代码块执行是在事务之内执行的,可以推断在代码块执行完时,事务还未提交,锁已经被释放,此时其他线程拿到锁之后进行锁住的代码块,读取的库存数据不是最新的。

正确的实现方法,可以在updateDB方法之前就上锁,即还没有开事务之前就加锁,那么就可以保证线程的安全性.

9.锁可重入

前面讨论的Redis分布式锁,都是不可重入的。

所谓的不可重入,就是当前线程执行某个方法已经获取了该锁,那么在方法中尝试再次获取锁时,会阻塞,不可以再次获得锁。同一个人拿一个锁
,只能拿一次不能同时拿2次。

不可重入的分布式锁的话,是可以满足绝大多数的业务场景。但是有时候一些业务场景,我们还是需要可重入的分布式锁,大家实现分布式锁的过程中,需要注意一下,你当前的业务场景是否需要可重入的分布式锁。

Redis只要解决这两个问题,就能实现重入锁了:

  • 怎么保存当前持有的线程
  • 怎么维护加锁次数(即重入了多少次)

实现一个可重入的分布式锁,我们可以参考JDK的ReentrantLock的设计思想。实际上,可以直接使用Redisson框架,它是支持可重入锁的。

10.Redis主从复制导致的坑

实现Redis分布式锁的话,要注意Redis主从复制的坑。因为Redis一般都是集群部署的:
在这里插入图片描述

如果线程一在Redis的master节点上拿到了锁,但是加锁的key还没同步到slave节点。恰好这时,master节点发生故障,一个slave节点就会升级为master节点。线程二就可以获取同个key的锁啦,但线程一也已经拿到锁了,锁的安全性就没了。

为了解决这个问题,Redis作者 antirez提出一种高级的分布式锁算法:Redlock。Redlock核心思想是这样的:

搞多个Redis
master部署,以保证它们不会同时宕掉。并且这些master节点是完全相互独立的,相互之间不存在数据同步。同时,需要确保在这多个master实例上,是与在Redis单实例,使用相同方法来获取和释放锁。

我们假设当前有5个Redis master节点,在5台服务器上面运行这些Redis实例。

在这里插入图片描述

RedLock的实现步骤如下:

  1. 获取当前时间,以毫秒为单位。
  2. 按顺序向5个master节点请求加锁。客户端设置网络连接和响应超时时间,并且超时时间要小于锁的失效时间。(假设锁自动失效时间为10秒,则超时时间一般在5-50毫秒之间,我们就假设超时时间是50ms吧)。如果超时,跳过该master节点,尽快去尝试下一个master节点。
  3. 客户端使用当前时间减去开始获取锁时间(即步骤1记录的时间),得到获取锁使用的时间。当且仅当超过一半(N/2+1,这里是5/2+1=3个节点)的Redis master节点都获得锁,并且使用的时间小于锁失效时间时,锁才算获取成功。(如上图,10s> 30ms+40ms+50ms+4m0s+50ms)
  4. 如果取到了锁,key的真正有效时间就变啦,需要减去获取锁所使用的时间。
  5. 如果获取锁失败(没有在至少N/2+1个master实例取到锁,有或者获取锁时间已经超过了有效时间),客户端要在所有的master节点上解锁(即便有些master节点根本就没有加锁成功,也需要解锁,以防止有些漏网之鱼)。

简化下步骤就是:

  • 按顺序向5个master节点请求加锁
  • 根据设置的超时时间来判断,是不是要跳过该master节点。
  • 如果大于等于3个节点加锁成功,并且使用的时间小于锁的有效期,即可认定加锁成功啦。
  • 如果获取锁失败,解锁!

参考与感谢

Redis分布式锁失效的场景[1]
redis分布式锁-可重入锁[2]

参考资料

[1]Redis分布式锁失效的场景: https://blog.csdn.net/he247052163/article/details/119413877

[2]redis分布式锁-可重入锁: https://www.cnblogs.com/x-kq/p/14801527.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/16972.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Linux内核解析-linux-5.14.10-内核源码注释】MM内存管理内核启动初始化源码解析

源码 这是Linux内核中的mm_init函数的代码&#xff0c;其作用是初始化内存管理相关的组件和数据结构。 static: 这是一个函数声明修饰符&#xff0c;表示该函数只在当前文件中可见。 void __init: 这是函数的返回类型和修饰符&#xff0c;表示该函数是内核初始化代码。 page…

Redis缓存(双写一致性问题)

Redis缓存&#xff08;双写一致性问题&#xff09; 1 什么是缓存?1.1 为什么要使用缓存1.2 如何使用缓存 2 添加缓存2.1 、缓存模型和思路2.2、代码如下 3 缓存更新策略3.1 、数据库缓存不一致解决方案&#xff1a;3.2 、数据库和缓存不一致采用什么方案 4 实现商铺和缓存与数…

( 字符串) 647. 回文子串 ——【Leetcode每日一题】

❓647. 回文子串 难度&#xff1a;中等 给你一个字符串 s &#xff0c;请你统计并返回这个字符串中 回文子串 的数目。 回文字符串 是正着读和倒过来读一样的字符串。 子字符串 是字符串中的由连续字符组成的一个序列。 具有不同开始位置或结束位置的子串&#xff0c;即使…

作业区域工服穿戴识别算法 yolov7

作业区域工服穿戴识别系统基于yolov7视频智能图像识别技术&#xff0c;作业区域工服穿戴识别算法模型利用深度学习技术&#xff0c;不需人为干预自动识别现场施工作业人员未按要求穿工作服行为&#xff0c;代替后台工作人员执勤时的人眼判断。YOLOv7 研究团队提出了基于 ELAN 的…

浅谈网络流

网络流 流网络&#xff1a; G ( V , E ) G(V,E) G(V,E)是一个有向图&#xff0c;网络中有两个特殊点&#xff1a;源点s与汇点t。容量用 c c c表示&#xff0c;流量用 f f f表示 流网络G中满足两个性质&#xff1a;1、容量限制(通过一条边的流量不会超过该边的容量)&#xff…

音视频技术开发周刊 | 291

每周一期&#xff0c;纵览音视频技术领域的干货。 新闻投稿&#xff1a;contributelivevideostack.com。 谷歌将 AI 芯片团队并入云计算部门 追赶微软和亚马逊 OpenAI推出的ChatGPT获得一定成功&#xff0c;微软是OpenAI的重要投资者&#xff0c;它将ChatGPT植入必应搜索&#…

基于STATCOM的风力发电机稳定性问题仿真分析(Simulink)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

thinkphp6 JWT报错 ‘“kid“ empty, unable to lookup correct key‘解决办法

文章目录 JWT简介安装问题先前的代码解决办法修改后的完整代码 JWT简介 JWT全称为Json Web Token&#xff0c;是一种用于在网络应用之间传递信息的简洁、安全的方式。JWT标准定义了一种简洁的、自包含的方法用于通信双方之间以JSON对象的形式安全的传递信息。由于它的简洁性、可…

关于SpringBoot整合Websocket实现简易对话聊天窗

前言 官网链接&#xff1a;Websocket Websocket 是什么&#xff1f;它可以将两个独立的浏览器窗口作为通信的两端。 这种形式的通信与传统的 HTTP、TCP 所不同。传统的 HTTP 请求—响应协议是无法实现实时通信的&#xff0c;也就是说&#xff0c;只能由客户端向服务端发送请求…

英语中主语从句的概念及其用法,例句(不断更新)

主语从句的原理 主语从句是一种充当整个句子主语的从句&#xff0c;主语从句构成的句子&#xff0c;是要以引导词开头的。它可以用名词性从属连词、关系代词或关系副词引导。主语从句通常位于谓语动词之前&#xff0c;用于表示动作、状态或事件的主体。 以下是一些常用的引导主…

MiniGPT-4,开源了!

上个月GPT-4发布时&#xff0c;我曾写过一篇文章分享过有关GPT-4的几个关键信息。 当时的分享就提到了GPT-4的一个重要特性&#xff0c;那就是多模态能力。 比如发布会上演示的&#xff0c;输入一幅图&#xff08;手套掉下去会怎么样&#xff1f;&#xff09;。 GPT-4可以理解…

推荐几个可以免费使用的ChatGPT工具

在ChatGPT相关API推出之后&#xff0c;各种工具如雨后春笋一般层出不穷&#xff0c;这篇文章就列举一些日常使用到的工具。 工具列表 OpenAI 在线读取任意网页内容包括视频&#xff08;YouTube&#xff09;&#xff0c;并根据这些内容回答你提出的相关问题或总结相关内容支持…

Mysql-视图

视图 视图介绍视图的语法视图的检查选项CASCADEDLOCAL 视图的更新视图的作用 视图介绍 视图&#xff08;View&#xff09;是一种虚拟存在的表。视图中的数据并不在数据库中实际存在&#xff0c;行和列数据来自定义视图的查询中使用的表&#xff0c;并且是在使用视图时动态生成的…

【配电网优化】基于串行和并行ADMM算法的配电网优化研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

2023年值得关注的20大网络安全趋势

随着围绕所有企业的数字革命&#xff0c;无论大小&#xff0c;企业、组织甚至政府都依赖计算机化系统来管理他们的日常活动&#xff0c;从而使网络安全成为保护数据免受各种在线攻击或任何未经授权访问的主要目标。 随着数据泄露、勒索软件和黑客攻击的新闻成为常态&#xff0…

java获取文件夹下所有文件名

在进行 Java编程的过程中&#xff0c;我们会经常使用到文件夹下的所有文件名。有时候可能不太熟悉 Java编程的小伙伴们会发现&#xff0c;在代码中没有获取到所有的文件名&#xff0c;那么这个时候我们应该怎么去获取到这些文件呢&#xff1f;在进行 Java编程的过程中&#xff…

深度学习卷积神经网络学习小结

————————————————————————————————————————————— 学习小结&#xff1a; 1&#xff09;深度学习综述&#xff1b;&#xff08;2&#xff09;对卷积神经网络&#xff08;CNN&#xff09;的认识&#xff1b;&#xff08;3&#xff0…

08 Kubernetes应用配置管理

课件 在 Kubernetes 中&#xff0c;secret 是一种用于存储敏感信息的对象。Kubernetes 支持以下三种类型的 secret&#xff1a; Opaque&#xff1a;这是默认的 secret 类型&#xff0c;可以用于存储任何类型的数据&#xff0c;包括字符串、二进制数据等。 Service Account&…

Python研究生组蓝桥杯(省二)参赛感受

为什么参加蓝桥杯&#xff1f; 今年是读研的第一年&#xff0c;看着我简历上的获奖经历“优秀学生干部”“优秀志愿者”“优秀毕业生”......大学四年&#xff0c;我竟然没有一次竞赛类的经历&#xff0c;也没有拿得出手的项目&#xff0c;我陷入了深深的焦虑。 听说蓝桥杯的…

[架构之路-183]-《软考-系统分析师》-13-系统设计 - 高内聚低耦合详解、图解以及技术手段

目录 第1章 什么是高内聚低耦合 1.1 概念 1.2 目的 1.3 什么时候需要进行高内聚低耦合 1.4 什么系统需要关注高内聚、低耦合 第2章 分类 2.1 内聚的分类 2.2 耦合的分类 第3章 增加高内聚降低耦合度的方法 3.1 增加高内聚 3.2 降低耦合度 第1章 什么是高内聚低耦…