【小呆的力学笔记】有限元专题之循环对称结构有限元原理

文章目录

      • 1. 循环对称问题的提出
      • 2. 循环对称条件
        • 2.1 节点位移的循环对称关系
        • 2.2 节点内力的循环对称关系
      • 3. 在平衡方程中引入循环对称条件

1. 循环对称问题的提出

许多工程结构都是其中某一扇面的n次周向重复,也就是是周期循环对称结构。如果弹性体的几何形状、约束情况以及所受的外部载荷都是对称于某一轴,则所有的应力、应变和位移也就对称于对称轴,那么这就是循环对称问题。典型的有发动机轮盘受离心力载荷下的应力分析,轮盘结构如下图1所示。观察轮盘结构,不难发现轮盘是扇形段重复多次的结构,那么离心力是周期循环对称的,并假设轮盘温度场是沿周向均布的,那么轮盘的应力应变应该也是周期循环对称的。

在这里插入图片描述

对于循环对称问题,事实上可以通过仅对某一扇面进行有限元模型就能获得正确的应力、应变和位移分析结果,当然需要在有限元算法中引入特殊的条件。

2. 循环对称条件

2.1 节点位移的循环对称关系

在循环对称问题中,需要引入柱坐标系,来给定循环对称条件。如下图,其中 x y z xyz xyz是笛卡尔坐标系, r θ z r\theta z rθz是柱坐标系,结构是典型轮盘的某一扇段。

在这里插入图片描述

在该循环对称问题中,扇面的面A的节点 i i i和面B的对应节点 j j j在柱坐标系 r θ z r\theta z rθz应该具有相同的坐标,同时应该也具备相同的位移变量。假设节点 i i i和节点 j j j分别属于面A和面B的一对对应节点,见下面示意图,那么其柱坐标下的位移变量应该满足下式关系:
u r i = u r j u θ i = u θ j u z i = u z j u_{ri}=u_{rj}\\u_{\theta i}=u_{\theta j}\\u_{zi}=u_{zj} uri=urjuθi=uθjuzi=uzj
在这里插入图片描述

节点 i i i在柱坐标系下的位移与在笛卡尔坐标系下的位移进行变换,具体的变换关系如下

− u r i sin ⁡ α − u θ i cos ⁡ α = u x i u r i cos ⁡ α − u θ i sin ⁡ α = u y i u z i = u z i -u_{ri}\sin\alpha-u_{\theta i}\cos\alpha=u_{xi}\\ u_{ri}\cos\alpha-u_{\theta i}\sin\alpha=u_{yi}\\u_{zi}=u_{zi} urisinαuθicosα=uxiuricosαuθisinα=uyiuzi=uzi
写成矩阵形式
[ u x i u y i u z i ] = [ − sin ⁡ α − cos ⁡ α 0 cos ⁡ α − sin ⁡ α 0 0 0 1 ] [ u r i u θ i u z i ] \begin{bmatrix} u_{xi}\\u_{yi}\\u_{zi} \end{bmatrix}= \begin{bmatrix} -\sin\alpha & -\cos\alpha & 0\\ \cos\alpha &-\sin\alpha & 0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} u_{ri}\\u_{\theta i}\\u_{zi} \end{bmatrix} uxiuyiuzi = sinαcosα0cosαsinα0001 uriuθiuzi
节点 j j j在柱坐标系下的位移与在笛卡尔坐标系下的位移进行变换,具体的变换关系如下
u r j sin ⁡ β − u θ j cos ⁡ β = u x j u r j cos ⁡ β + u θ j sin ⁡ β = u y j u z j = u z j u_{rj}\sin\beta-u_{\theta j}\cos\beta=u_{xj}\\ u_{rj}\cos\beta+u_{\theta j}\sin\beta=u_{yj}\\ u_{zj}=u_{zj} urjsinβuθjcosβ=uxjurjcosβ+uθjsinβ=uyjuzj=uzj
写成矩阵形式
[ u x j u y j u z j ] = [ sin ⁡ β − cos ⁡ β 0 cos ⁡ α sin ⁡ β 0 0 0 1 ] [ u r j u θ j u z j ] \begin{bmatrix}u_{xj}\\u_{yj}\\u_{zj}\end{bmatrix} =\begin{bmatrix} \sin\beta & -\cos\beta & 0\\ \cos\alpha &\sin\beta & 0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} u_{rj}\\u_{\theta j}\\u_{zj} \end{bmatrix} uxjuyjuzj = sinβcosα0cosβsinβ0001 urjuθjuzj
那么
[ u r j u θ j u z j ] = [ sin ⁡ β cos ⁡ β 0 − cos ⁡ α sin ⁡ β 0 0 0 1 ] [ u x j u y j u z j ] \begin{bmatrix}u_{rj}\\u_{\theta j}\\u_{zj}\end{bmatrix} =\begin{bmatrix} \sin\beta & \cos\beta & 0\\ -\cos\alpha &\sin\beta & 0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} u_{xj}\\u_{yj}\\u_{zj} \end{bmatrix} urjuθjuzj = sinβcosα0cosβsinβ0001 uxjuyjuzj
由于
[ u r i u θ i u z i ] = [ u r j u θ j u z j ] \begin{bmatrix}u_{ri}\\u_{\theta i}\\u_{zi}\end{bmatrix} =\begin{bmatrix}u_{rj}\\u_{\theta j}\\u_{zj}\end{bmatrix} uriuθiuzi = urjuθjuzj
那么
[ u x i u y i u z i ] = [ − sin ⁡ α − cos ⁡ α 0 cos ⁡ α − sin ⁡ α 0 0 0 1 ] [ u r i u θ i u z i ] = [ − sin ⁡ α − cos ⁡ α 0 cos ⁡ α − sin ⁡ α 0 0 0 1 ] [ u r j u θ j u z j ] = [ − sin ⁡ α − cos ⁡ α 0 cos ⁡ α − sin ⁡ α 0 0 0 1 ] [ sin ⁡ β cos ⁡ β 0 − cos ⁡ α sin ⁡ β 0 0 0 1 ] [ u x j u y j u z j ] = [ − sin ⁡ α sin ⁡ β + cos ⁡ α cos ⁡ β − sin ⁡ α cos ⁡ β − cos ⁡ α sin ⁡ β 0 cos ⁡ α sin ⁡ β + sin ⁡ α cos ⁡ β cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β 0 0 0 1 ] [ u x j u y j u z j ] = [ cos ⁡ ( α + β ) − sin ⁡ ( α + β ) 0 sin ⁡ ( α + β ) cos ⁡ ( α + β ) 0 0 0 1 ] [ u x j u y j u z j ] = [ cos ⁡ ( θ ) − sin ⁡ ( θ ) 0 sin ⁡ ( θ ) cos ⁡ ( θ ) 0 0 0 1 ] [ u x j u y j u z j ] = [ θ 1 ] [ u x j u y j u z j ] \begin{bmatrix}u_{xi}\\u_{yi}\\u_{zi}\end{bmatrix} =\begin{bmatrix} -\sin\alpha & -\cos\alpha & 0\\ \cos\alpha &-\sin\alpha & 0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} u_{ri}\\u_{\theta i}\\u_{zi} \end{bmatrix} =\begin{bmatrix} -\sin\alpha & -\cos\alpha & 0\\ \cos\alpha &-\sin\alpha & 0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} u_{rj}\\u_{\theta j}\\u_{zj} \end{bmatrix}\\ =\begin{bmatrix} -\sin\alpha & -\cos\alpha & 0\\ \cos\alpha &-\sin\alpha & 0\\ 0&0&1 \end{bmatrix}\begin{bmatrix} \sin\beta & \cos\beta & 0\\ -\cos\alpha &\sin\beta & 0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} u_{xj}\\u_{yj}\\u_{zj} \end{bmatrix} \\ =\begin{bmatrix} -\sin\alpha\sin\beta+\cos\alpha\cos\beta & -\sin\alpha\cos\beta-\cos\alpha\sin\beta & 0\\ \cos\alpha\sin\beta+\sin\alpha\cos\beta & \cos\alpha\cos\beta-\sin\alpha\sin\beta &0\\ 0&0&1 \end{bmatrix}\begin{bmatrix} u_{xj}\\u_{yj}\\u_{zj} \end{bmatrix}\\ =\begin{bmatrix} \cos(\alpha+\beta) & -\sin(\alpha+\beta) & 0\\ \sin(\alpha+\beta) & \cos(\alpha+\beta) &0\\ 0&0&1 \end{bmatrix}\begin{bmatrix} u_{xj}\\u_{yj}\\u_{zj} \end{bmatrix}\\ =\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) &0\\ 0&0&1 \end{bmatrix}\begin{bmatrix} u_{xj}\\u_{yj}\\u_{zj} \end{bmatrix}=\begin{bmatrix}\theta_1\end{bmatrix}\begin{bmatrix} u_{xj}\\u_{yj}\\u_{zj} \end{bmatrix} uxiuyiuzi = sinαcosα0cosαsinα0001 uriuθiuzi = sinαcosα0cosαsinα0001 urjuθjuzj = sinαcosα0cosαsinα0001 sinβcosα0cosβsinβ0001 uxjuyjuzj = sinαsinβ+cosαcosβcosαsinβ+sinαcosβ0sinαcosβcosαsinβcosαcosβsinαsinβ0001 uxjuyjuzj = cos(α+β)sin(α+β)0sin(α+β)cos(α+β)0001 uxjuyjuzj = cos(θ)sin(θ)0sin(θ)cos(θ)0001 uxjuyjuzj =[θ1] uxjuyjuzj

2.2 节点内力的循环对称关系

扇形段I除了节点位移存在循环对称关系,剩余扇形对扇形段I的节点力也存在循环对称关系。典型的扇形段相互作用关系见下图,其中扇形段I是分析对象,扇形段II和扇形段III对扇形段I有相互作用。

在这里插入图片描述
其中扇形段I、II、III是重复扇形段, i i i i ′ i^{'} i i ′ ′ i^{''} i′′是一组对应周期循环节点, j j j j ′ j^{'} j j ′ ′ j^{''} j′′是一组对应周期循环节点。
其中 j ′ j^{'} j i i i的作用力为 f r i f_{ri} fri f θ i f_{\theta i} fθi f z i f_{zi} fzi j j j i ′ ′ i^{''} i′′的作用力为 f r i ′ ′ f_{ri^{''}} fri′′ f θ i ′ ′ f_{\theta i^{''}} fθi′′ f z i ′ ′ f_{zi^{''}} fzi′′,从周期循环对称特征定义,可知
f r i = f r i ′ ′ f θ i = f θ i ′ ′ f z i = f z i ′ ′ f_{ri}=f_{ri^{''}}\\ f_{\theta i}=f_{\theta i^{''}}\\ f_{zi}=f_{zi^{''}} fri=fri′′fθi=fθi′′fzi=fzi′′
那么, i ′ ′ i^{''} i′′ j j j的作用力 f r j f_{rj} frj f θ j f_{\theta j} fθj f z j f_{zj} fzj,存在如下关系式
f r i = − f r j f θ i = − f θ j f z i = − f z j f_{ri}=-f_{rj}\\ f_{\theta i}=-f_{\theta j}\\ f_{zi}=-f_{zj} fri=frjfθi=fθjfzi=fzj
注:上述节点力均在柱坐标系下。
参照上节节点位移的转换关系推导过程,不难推得在上述节点力关系式在笛卡尔坐标系下的表达式
[ f x i f y i f z i ] = − [ θ 1 ] [ f x j f y j f z j ] \begin{bmatrix}f_{xi}\\f_{yi}\\f_{zi}\end{bmatrix}=-\begin{bmatrix}\theta_1\end{bmatrix}\begin{bmatrix} f_{xj}\\f_{yj}\\f_{zj} \end{bmatrix} fxifyifzi =[θ1] fxjfyjfzj

3. 在平衡方程中引入循环对称条件

若某循环结构包含一对循环对称节点 i i i j j j,不失一般性,平衡方程可以写成下式

[ k 11 k 12 ⋯ k 1 i ⋯ k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i ⋯ k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ k i 1 k i 2 ⋯ k i i ⋯ k i j ⋯ k i n ⋮ ⋮ ⋮ ⋮ ⋮ k j 1 k j 2 ⋯ k j i ⋯ k j j ⋯ k j n ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i ⋯ k n j ⋯ k n n ] [ u 1 u 2 ⋮ u i ⋮ u j ⋮ u n ] = [ R 1 + F 1 F 2 ⋮ F i + f i ⋮ F j + f j ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i}&\cdots&k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i}&\cdots&k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{i1}&k_{i2}&\cdots&k_{ii}&\cdots&k_{ij}&\cdots&k_{in}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{j1}&k_{j2}&\cdots&k_{ji}&\cdots&k_{jj}&\cdots&k_{jn}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni}&\cdots&k_{nj}&\cdots&k_{nn}\\\end{bmatrix} \begin{bmatrix}u_1\\u_2\\\vdots\\u_i\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\F_i+f_i\\\vdots\\F_j+f_j\\\vdots\\F_n \end{bmatrix} k11k21ki1kj1kn1k12k22ki2kj2kn2k1ik2ikiikjiknik1jk2jkijkjjknjk1nk2nkinkjnknn u1u2uiujun = R1+F1F2Fi+fiFj+fjFn
式中 u 1 u_1 u1为模型的位移约束,有 u 1 = u ‾ 1 u_1=\overline u_1 u1=u1 R 1 R_1 R1为支反力; F i , i = 1 , ⋯ F_i,i=1,\cdots Fii=1,为节点外载荷, f i 、 f j f_i、f_j fifj为其他扇形段对扇形段I的作用力,这里引入循环对称条件,

[ f i ] = − [ θ 1 ] [ f j ] \begin{bmatrix}f_{i}\end{bmatrix}=-\begin{bmatrix}\theta_1\end{bmatrix}\begin{bmatrix} f_{j}\end{bmatrix} [fi]=[θ1][fj]
上面平衡方程变成如下形式
[ k 11 k 12 ⋯ k 1 i ⋯ k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i ⋯ k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ k i 1 k i 2 ⋯ k i i ⋯ k i j ⋯ k i n ⋮ ⋮ ⋮ ⋮ ⋮ k j 1 k j 2 ⋯ k j i ⋯ k j j ⋯ k j n ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i ⋯ k n j ⋯ k n n ] [ u ‾ 1 u 2 ⋮ u i ⋮ u j ⋮ u n ] = [ R 1 + F 1 F 2 ⋮ F i − θ f j ⋮ F j + f j ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i}&\cdots&k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i}&\cdots&k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{i1}&k_{i2}&\cdots&k_{ii}&\cdots&k_{ij}&\cdots&k_{in}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{j1}&k_{j2}&\cdots&k_{ji}&\cdots&k_{jj}&\cdots&k_{jn}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni}&\cdots&k_{nj}&\cdots&k_{nn}\\\end{bmatrix} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\ u_i\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\F_i-\theta f_j\\\vdots\\F_j+f_j\\\vdots\\F_n \end{bmatrix} k11k21ki1kj1kn1k12k22ki2kj2kn2k1ik2ikiikjiknik1jk2jkijkjjknjk1nk2nkinkjnknn u1u2uiujun = R1+F1F2FiθfjFj+fjFn
进一步,用 θ T \theta^T θT左乘第 i i i行,则
[ k 11 k 12 ⋯ k 1 i ⋯ k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i ⋯ k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 θ T k i 2 ⋯ θ T k i i ⋯ θ T k i j ⋯ θ T k i n ⋮ ⋮ ⋮ ⋮ ⋮ k j 1 k j 2 ⋯ k j i ⋯ k j j ⋯ k j n ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i ⋯ k n j ⋯ k n n ] [ u ‾ 1 u 2 ⋮ u i ⋮ u j ⋮ u n ] = [ R 1 + F 1 F 2 ⋮ θ T F i − f j ⋮ F j + f j ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i}&\cdots&k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i}&\cdots&k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}&\theta^Tk_{i2}&\cdots&\theta^Tk_{ii}&\cdots&\theta^Tk_{ij}&\cdots&\theta^Tk_{in}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{j1}&k_{j2}&\cdots&k_{ji}&\cdots&k_{jj}&\cdots&k_{jn}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni}&\cdots&k_{nj}&\cdots&k_{nn}\\\end{bmatrix} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\ u_i\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\\theta^TF_i-f_j\\\vdots\\F_j+f_j\\\vdots\\F_n \end{bmatrix} k11k21θTki1kj1kn1k12k22θTki2kj2kn2k1ik2iθTkiikjiknik1jk2jθTkijkjjknjk1nk2nθTkinkjnknn u1u2uiujun = R1+F1F2θTFifjFj+fjFn
将第 i i i行加到第 j j j行,上式进一步变换为
[ k 11 k 12 ⋯ k 1 i ⋯ k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i ⋯ k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 θ T k i 2 ⋯ θ T k i i ⋯ θ T k i j ⋯ θ T k i n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 + k j 1 θ T k i 2 + k j 2 ⋯ θ T k i i + k j i ⋯ θ T k i j + k j j ⋯ θ T k i n + k j n ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i ⋯ k n j ⋯ k n n ] [ u ‾ 1 u 2 ⋮ u i ⋮ u j ⋮ u n ] = [ R 1 + F 1 F 2 ⋮ θ T F i − f j ⋮ F j + θ T F i ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i}&\cdots&k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i}&\cdots&k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}&\theta^Tk_{i2}&\cdots&\theta^Tk_{ii}&\cdots&\theta^Tk_{ij}&\cdots&\theta^Tk_{in}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}+k_{j1}&\theta^Tk_{i2}+k_{j2}&\cdots&\theta^Tk_{ii}+k_{ji}&\cdots&\theta^Tk_{ij}+k_{jj}&\cdots&\theta^Tk_{in}+k_{jn}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni}&\cdots&k_{nj}&\cdots&k_{nn}\\\end{bmatrix} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\u_i\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\\theta^TF_i-f_j\\\vdots\\F_j+\theta^TF_i\\\vdots\\F_n \end{bmatrix} k11k21θTki1θTki1+kj1kn1k12k22θTki2θTki2+kj2kn2k1ik2iθTkiiθTkii+kjiknik1jk2jθTkijθTkij+kjjknjk1nk2nθTkinθTkin+kjnknn u1u2uiujun = R1+F1F2θTFifjFj+θTFiFn
将位移循环对称条件引入上式中
[ u i ] = [ θ 1 ] [ u j ] \begin{bmatrix}u_{i}\end{bmatrix}=\begin{bmatrix}\theta_1\end{bmatrix}\begin{bmatrix}u_{j}\end{bmatrix} [ui]=[θ1][uj]
那么平衡方程变换为
[ k 11 k 12 ⋯ k 1 i ⋯ k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i ⋯ k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 θ T k i 2 ⋯ θ T k i i ⋯ θ T k i j ⋯ θ T k i n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 + k j 1 θ T k i 2 + k j 2 ⋯ θ T k i i + k j i ⋯ θ T k i j + k j j ⋯ θ T k i n + k j n ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i ⋯ k n j ⋯ k n n ] [ u ‾ 1 u 2 ⋮ θ u j ⋮ u j ⋮ u n ] = [ R 1 + F 1 F 2 ⋮ θ T F i − f j ⋮ F j + θ T F i ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i}&\cdots&k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i}&\cdots&k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}&\theta^Tk_{i2}&\cdots&\theta^Tk_{ii}&\cdots&\theta^Tk_{ij}&\cdots&\theta^Tk_{in}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}+k_{j1}&\theta^Tk_{i2}+k_{j2}&\cdots&\theta^Tk_{ii}+k_{ji}&\cdots&\theta^Tk_{ij}+k_{jj}&\cdots&\theta^Tk_{in}+k_{jn}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni}&\cdots&k_{nj}&\cdots&k_{nn}\\\end{bmatrix} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\\theta u_j\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\\theta^TF_i-f_j\\\vdots\\F_j+\theta^TF_i\\\vdots\\F_n \end{bmatrix} k11k21θTki1θTki1+kj1kn1k12k22θTki2θTki2+kj2kn2k1ik2iθTkiiθTkii+kjiknik1jk2jθTkijθTkij+kjjknjk1nk2nθTkinθTkin+kjnknn u1u2θujujun = R1+F1F2θTFifjFj+θTFiFn
θ \theta θ提出来,右乘到第 i i i列,那么上式变为
[ k 11 k 12 ⋯ k 1 i θ ⋯ k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i θ ⋯ k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 θ T k i 2 ⋯ θ T k i i θ ⋯ θ T k i j ⋯ θ T k i n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 + k j 1 θ T k i 2 + k j 2 ⋯ θ T k i i θ + k j i θ ⋯ θ T k i j + k j j ⋯ θ T k i n + k j n ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i θ ⋯ k n j ⋯ k n n ] [ u ‾ 1 u 2 ⋮ u j ⋮ u j ⋮ u n ] = [ R 1 + F 1 F 2 ⋮ θ T F i − f j ⋮ F j + θ T F i ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i}\theta&\cdots&k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i}\theta&\cdots&k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}&\theta^Tk_{i2}&\cdots&\theta^Tk_{ii}\theta&\cdots&\theta^Tk_{ij}&\cdots&\theta^Tk_{in}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}+k_{j1}&\theta^Tk_{i2}+k_{j2}&\cdots&\theta^Tk_{ii}\theta+k_{ji}\theta&\cdots&\theta^Tk_{ij}+k_{jj}&\cdots&\theta^Tk_{in}+k_{jn}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni}\theta&\cdots&k_{nj}&\cdots&k_{nn}\\\end{bmatrix} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\u_j\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\\theta^TF_i-f_j\\\vdots\\F_j+\theta^TF_i\\\vdots\\F_n \end{bmatrix} k11k21θTki1θTki1+kj1kn1k12k22θTki2θTki2+kj2kn2k1iθk2iθθTkiiθθTkiiθ+kjiθkniθk1jk2jθTkijθTkij+kjjknjk1nk2nθTkinθTkin+kjnknn u1u2ujujun = R1+F1F2θTFifjFj+θTFiFn

在上式中用缩减节点的位移列阵替换全节点位移列阵,即用 [ u ‾ 1 , u 2 , ⋯   , u i − 1 , u i + 1 , ⋯   , u j , ⋯   , u n ] \begin{bmatrix}\overline u_1,u_2,\cdots,u_{i-1},u_{i+1},\cdots,u_j,\cdots,u_n \end{bmatrix} [u1,u2,,ui1,ui+1,,uj,,un]替换 [ u ‾ 1 , u 2 , ⋯   , u i − 1 , u j , u i + 1 , ⋯   , u j , ⋯   , u n ] \begin{bmatrix}\overline u_1,u_2,\cdots,u_{i-1},u_{j},u_{i+1},\cdots,u_j,\cdots,u_n \end{bmatrix} [u1,u2,,ui1,ujui+1,,uj,,un]
那么相应的要将位移列阵中第 i i i行归属 u j u_j uj合并到第 j j j列,那么平衡方程变换为

[ k 11 k 12 ⋯ k 1 i − 1 k 1 i + 1 ⋯ k 1 i θ + k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i − 1 k 2 i + 1 ⋯ k 2 i θ + k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 θ T k i 2 ⋯ θ T k i i − 1 θ T k i i + 1 ⋯ θ T k i i θ + θ T k i j ⋯ θ T k i n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 + k j 1 θ T k i 2 + k j 2 ⋯ θ T k i i − 1 + k j i − 1 θ T k i i + 1 + k j i + 1 ⋯ θ T k i i θ + k j i θ + θ T k i j + k j j ⋯ θ T k i n + k j n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i − 1 k n i + 1 ⋯ k n i θ + k n j ⋯ k n n ] n × ( n − 1 ) [ u ‾ 1 u 2 ⋮ u i − 1 u i + 1 ⋮ u j ⋮ u n ] ( n − 1 ) × 1 = [ R 1 + F 1 F 2 ⋮ θ T F i − f j ⋮ F j + θ T F i ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i-1}&k_{1i+1}&\cdots&k_{1i}\theta +k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i-1}&k_{2i+1}&\cdots&k_{2i}\theta+k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots&\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}&\theta^Tk_{i2}&\cdots&\theta^Tk_{ii-1}&\theta^Tk_{ii+1} &\cdots&\theta^Tk_{ii}\theta+\theta^Tk_{ij}&\cdots&\theta^Tk_{in}\\ \vdots&\vdots& &\vdots&\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}+k_{j1}&\theta^Tk_{i2}+k_{j2}&\cdots&\theta^Tk_{ii-1}+k_{ji-1}&\theta^Tk_{ii+1} +k_{ji+1}&\cdots&\theta^Tk_{ii}\theta+k_{ji}\theta+\theta^Tk_{ij}+k_{jj}&\cdots&\theta^Tk_{in}+k_{jn}\\ \vdots&\vdots& &\vdots&\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni-1}&k_{ni+1}&\cdots&k_{ni}\theta+k_{nj}&\cdots&k_{nn}\\\end{bmatrix}_{n\times (n-1)} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\u_{i-1}\\u_{i+1}\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}_{(n-1)\times 1}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\\theta^TF_i-f_j\\\vdots\\F_j+\theta^TF_i\\\vdots\\F_n \end{bmatrix} k11k21θTki1θTki1+kj1kn1k12k22θTki2θTki2+kj2kn2k1i1k2i1θTkii1θTkii1+kji1kni1k1i+1k2i+1θTkii+1θTkii+1+kji+1kni+1k1iθ+k1jk2iθ+k2jθTkiiθ+θTkijθTkiiθ+kjiθ+θTkij+kjjkniθ+knjk1nk2nθTkinθTkin+kjnknn n×(n1) u1u2ui1ui+1ujun (n1)×1= R1+F1F2θTFifjFj+θTFiFn
事实上如果位移列阵自由度为 ( n − 1 ) (n-1) (n1),那么相应的方程也只需要 ( n − 1 ) (n-1) (n1)个,因此我们去掉第 i i i方程,那么平衡方程变成
[ k 11 k 12 ⋯ k 1 , i − 1 k 1 , i + 1 ⋯ k 1 i θ + k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 , i − 1 k 2 , i + 1 ⋯ k 2 i θ + k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ k i − 1 , 1 k i − 1 , 2 ⋯ k i − 1 , i − 1 k i − 1 , i + 1 ⋯ k i − 1 , i θ + k i − 1 , j ⋯ k i − 1 , n k i + 1 , 1 k i + 1 , 2 ⋯ k i + 1 , i − 1 k i + 1 , i + 1 ⋯ k i + 1 , i θ + k i + 1 , j ⋯ k i + 1 , n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 + k j 1 θ T k i 2 + k j 2 ⋯ θ T k i , i − 1 + k j , i − 1 θ T k i , i + 1 + k j , i + 1 ⋯ θ T k i i θ + k j i θ + θ T k i j + k j j ⋯ θ T k i n + k j n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i − 1 k n i + 1 ⋯ k n i θ + k n j ⋯ k n n ] ( n − 1 ) × ( n − 1 ) [ u ‾ 1 u 2 ⋮ u i − 1 u i + 1 ⋮ u j ⋮ u n ] ( n − 1 ) × 1 = [ R 1 + F 1 F 2 ⋮ F i − 1 F i + 1 ⋮ F j + θ T F i ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1,i-1}&k_{1,i+1}&\cdots&k_{1i}\theta +k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2,i-1}&k_{2,i+1}&\cdots&k_{2i}\theta+k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots&\vdots& &\vdots& &\vdots\\ k_{i-1,1}&k_{i-1,2}&\cdots&k_{i-1,i-1}&k_{i-1,i+1} &\cdots &k_{i-1,i}\theta +k_{i-1,j}&\cdots&k_{i-1,n}\\ k_{i+1,1}&k_{i+1,2}&\cdots&k_{i+1,i-1}&k_{i+1,i+1} &\cdots &k_{i+1,i}\theta +k_{i+1,j}&\cdots&k_{i+1,n}\\ \vdots&\vdots& &\vdots&\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}+k_{j1}&\theta^Tk_{i2}+k_{j2}&\cdots&\theta^Tk_{i,i-1}+k_{j,i-1}&\theta^Tk_{i,i+1} +k_{j,i+1}&\cdots&\theta^Tk_{ii}\theta+k_{ji}\theta+\theta^Tk_{ij}+k_{jj}&\cdots&\theta^Tk_{in}+k_{jn}\\ \vdots&\vdots& &\vdots&\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni-1}&k_{ni+1}&\cdots&k_{ni}\theta+k_{nj}&\cdots&k_{nn}\\\end{bmatrix}_{(n-1)\times (n-1)} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\u_{i-1}\\u_{i+1}\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}_{(n-1)\times 1}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\F_{i-1}\\F_{i+1}\\\vdots\\F_j+\theta^TF_i\\\vdots\\F_n \end{bmatrix} k11k21ki1,1ki+1,1θTki1+kj1kn1k12k22ki1,2ki+1,2θTki2+kj2kn2k1,i1k2,i1ki1,i1ki+1,i1θTki,i1+kj,i1kni1k1,i+1k2,i+1ki1,i+1ki+1,i+1θTki,i+1+kj,i+1kni+1k1iθ+k1jk2iθ+k2jki1,iθ+ki1,jki+1,iθ+ki+1,jθTkiiθ+kjiθ+θTkij+kjjkniθ+knjk1nk2nki1,nki+1,nθTkin+kjnknn (n1)×(n1) u1u2ui1ui+1ujun (n1)×1= R1+F1F2Fi1Fi+1Fj+θTFiFn
将上式写成分块矩阵形式
[ k 11 K 12 K 21 K 22 ] [ u ‾ 1 U 2 ] = [ R 1 + F 1 F ^ ] \begin{bmatrix}k_{11}&K_{12}\\K_{21}&K_{22} \end{bmatrix}\begin{bmatrix}\overline u_{1}\\U_{2} \end{bmatrix}=\begin{bmatrix}R_{1}+F_{1}\\ \hat F \end{bmatrix} [k11K21K12K22][u1U2]=[R1+F1F^]
将其展开
k 11 u ‾ 1 + K 12 U 2 = R 1 + F 1 K 21 u ‾ 1 + K 22 U 2 = F ^ k_{11}\overline u_{1}+K_{12}U_{2} = R_{1}+F_{1}\\ K_{21}\overline u_{1}+K_{22}U_{2}=\hat F k11u1+K12U2=R1+F1K21u1+K22U2=F^
那么 U 2 U_{2} U2可以从下式求解
U 2 = K 22 − 1 ( F ^ − K 21 u ‾ 1 ) U_{2}=K_{22}^{-1}(\hat F - K_{21}\overline u_{1}) U2=K221(F^K21u1)
那么,有
R 1 = k 11 u ‾ 1 + K 12 U 2 − F 1 R_{1}=k_{11}\overline u_{1}+K_{12}U_{2}-F_{1} R1=k11u1+K12U2F1
同时,在确定 u j u_{j} uj后,将其回代入下式
[ u i ] = [ θ 1 ] [ u j ] \begin{bmatrix}u_{i}\end{bmatrix}=\begin{bmatrix}\theta_1\end{bmatrix}\begin{bmatrix}u_{j}\end{bmatrix} [ui]=[θ1][uj]
可以确定 u i u_{i} ui,那么就确定全部节点位移,带入平衡方程可以得到 f i 、 f j f_{i}、f_{j} fifj,解得所有未知量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/169690.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【zabbix监控四】zabbix之监控tomcat服务报警

一、监控tomcat服务是否正常运行 1、客户端部署 首先要在zabbix-agent客户端上安装tomcat服务,并能正常启动和关闭 1.1 客户端编写脚本 vim /opt/tomcat.sh#!/bin/bash anetstat -natp |grep 8080|awk {print $6}|grep LISTEN if [[ $a LISTEN ]];thenecho &qu…

redis非关系型数据库(缓存型数据库)——中间件

【重点】redis为什么这么快?(应届) ①redis是纯内存结构,避免磁盘I/O的耗时 ②redis核心模块是一个单进程,减少线程切换和回收线程资源时间 ③redis采用的是I/O的多路复用机制(每一个执行线路可以同时完…

原理Redis-Dict字典

Dict 1) Dict组成2) Dict的扩容3) Dict的收缩4) Dict的rehash5) 总结 1) Dict组成 Redis是一个键值型(Key-Value Pair)的数据库,可以根据键实现快速的增删改查。而键与值的映射关系正是通过Dict来实现的。 Dict由三部分组成,分别…

深入了解原型与原型链

1、[[Prototype]] JS中的对象有一个特殊的 [[Prototype]] 内置属性,其实就是对于其他对象的引用。几乎所有的对象在创建时 [[Prototype]] 属性都会被赋予一个非空的值。 var anotherObject {a:2 }; // 创建一个关联到 anotherObject 的对象 var myObject Object…

代码随想录算法训练营第二十九天| 491 递增子序列 46 全排列

目录 491 递增子序列 46 全排列 491 递增子序列 在dfs中进行判断,如果path的长度大于1,则将其添加到res中。 本题nums中的元素的值处于-100与100之间,可以将元素映射0到199之间并且通过布尔数组st来记录此层中元素是否被使用过,…

WordPress画廊插件Envira Gallery v1.9.7河蟹版下载

Envira Gallery是一款功能强大的WordPress画廊插件。通过使用这个插件,你可以在WordPress的前台页面上创建出令人赏心悦目的图片画廊展示形式。 拖放生成器:轻松创建精美照片和视频画廊 自定义主题,打造独特外观 使用预设模板,为…

运动耳机怎么选?运动耳机哪个好?蓝牙无线运动耳机排行榜10强

​说起耳机,相信大家都比较熟悉,特别是对于喜欢运动的爱好人士来说,那更是随身携带着。随着运动耳机的增长,大家都不知道该如何选择了。对于运动耳机除了需要佩戴稳固舒适之外,还有就是音质表现、防水性能、通话质量等…

智能井盖传感器建设信息化时代智慧城市

近年来随着信息技术的快速发展和城市化进程的加速推进,智慧城市的概念逐渐成为现实。作为智慧城市生命线建设中的重要组成部分,智能井盖传感器的应用正在为城市的可持续发展和居民的生活质量提供新的解决方案。 智能井盖传感器能够实时监测井盖状态&…

Windows 安装 Docker

目录 前言安装 WSL2WSL2 简介系统要求安装步骤 安装 Docker Desktop下载安装验证 安装 Docker Compose结语开源项目 前言 下图展示了在 Windows 系统上安装 Docker,并利用Docker Compose一键搭建 youlai-mall 微服务商城所需的环境。本篇将先介绍 Windows 上如何安…

【OpenCV】仿射变换中cv2.estimateAffine2D 的原理

目录 一、介绍 二、仿射变换矩阵 (M) 1.M中六个元素的说明 2.计算旋转角度 3.M的计算过程 三、输出状态 (inliers) 四、错切参数 1.错切参数的定义 2.错切参数例子 (1)水平错切 (2)垂直错切 一、介绍 cv2.estimateAffi…

K8S(一)

一、kubernetes 概述 1、kubernetes 基本介绍 kubernetes,简称 K8s,是用 8 代替 8 个字符“ubernete”而成的缩写。是一个开源的,用于管理云平台中多个主机上的容器化的应用,Kubernetes 的目标是让部署容器化的 应用简单并且高效…

数据保密新标杆:迅软DSE企业防泄密系统为企业安全保驾护航

由于目前数据安全防护边界越来越大,企业面临的内部安全风险正在快速增长;企业内部安全防护体系和管理制度一旦有所缺失,就会造成严重的数据泄露安全事故。面对互联网泄密事件层出不穷,企业管理者们对于企业数据安全管理如何落实到…

教你怎样查询现货黄金的历史价格

现货黄金投资者可以在日常使用的软件MT4在的终端窗口中,查询金价的历史数据和动态的价格行情,甚至可以把这些导出,作为日后的深入分析之用,我们将通过本文和大家分享MT4导出这些数据的具体方法。 具体操作: 在MT4交易…

C++ 调用 Lua 函数

零、前言 Lua 作为一门脚本语言,可以作为 “配置文件”、“动态逻辑脚本” 等角色作用于宿主程序。 因为他是一门语言,所以他有以下的好处: 1. Lua 会处理语法细节,后续维护简单,并且可以有注释。 2. 可以编写逻辑&…

python之代理ip的配置与调试

目录 前言 一、代理IP的配置 二、代理IP的调试 2.1 使用curl命令测试代理IP 2.2 使用requests库调试代理IP 三、代理IP的获取 3.1 使用代理IP池 3.2 使用付费代理IP服务 总结 前言 代理IP是网络爬虫中常用的技术手段。通过使用代理服务器,可以实现对特定网…

内网穿透的应用-如何在Docker中部署MinIO服务并结合内网穿透实现公网访问本地管理界面

文章目录 前言1. Docker 部署MinIO2. 本地访问MinIO3. Linux安装Cpolar4. 配置MinIO公网地址5. 远程访问MinIO管理界面6. 固定MinIO公网地址 前言 MinIO是一个开源的对象存储服务器,可以在各种环境中运行,例如本地、Docker容器、Kubernetes集群等。它兼…

【Linux】22、CPU 评价指标、性能工具、定位瓶颈、优化方法论:应用程序和系统

文章目录 一、评价 CPU 的指标1.1 CPU 使用率1.2 平均负载(Load Average)1.3 上下文切换1.4 CPU 缓存命中率 二、性能工具2.1 维度:从 CPU 性能指标出发,即当你查看某性能指标时,要清除知道哪些工具可以做到2.2 维度&a…

OpenCvSharp从入门到实践-(01)认识OpenCvSharp开发环境搭建

目录 一、OpenCV 二、OpenCvSharp 三、OpenCvSharp开发环境搭建 四、下载 五、其他 一、OpenCV OpenCV是基于Apache2.0许可(开源)发行的跨平台计算机视觉和机器学习函数库,支持Windows、Linux、Android和Mac OS操作系统。OpenCV由一系…

【活动通知】2023 Elastic Meetup 北京站将于12月2日下午1点30在北京召开

《2023 Elastic Meetup 北京站》活动将于 12 月 2 日下午 1 点 30 在北京市海淀区西北旺东路10号腾讯北京总部大楼213会议室举办,届时将有行业专家及知名企业分享他们在 Elasticsearch 应用中的经验与观点,带来最前沿的技术分享与思想碰撞。 请使用电脑浏…

vulnhub靶机Presidential

靶机地址:https://download.vulnhub.com/presidential/Presidential.ova 主机发现 arp-scan -l 端口扫描 nmap --min-rate 10000 192.168.21.150 端口服务扫描 nmap -sV -sT -O -p80 192.168.21.150 漏洞扫描 nmap --scriptvuln -p80 192.168.21.150 只有一个端…