基于人工水母算法优化概率神经网络PNN的分类预测 - 附代码

基于人工水母算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于人工水母算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于人工水母优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用人工水母算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于人工水母优化的PNN网络

人工水母算法原理请参考:https://blog.csdn.net/u011835903/article/details/121675877

利用人工水母算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

人工水母参数设置如下:

%% 人工水母参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,人工水母-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/168971.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vue-admin-template改变接口地址

修改登录接口 1.f12查看请求接口 模仿返回数据写接口 修改方式1 1.在env.devolopment修改 修改方式2 vue.config.js 改成本地接口地址 配置转发 后端创建相应接口,使用map返回相同的数据 修改前端请求路径 修改前端返回状态码 utils里面的request.js

Iceberg学习笔记(1)—— 基础知识

Iceberg是一个面向海量数据分析场景的开放表格式(Table Format),其设计的目的是解决数据存储和计算引擎之间的适配的问题 表格式(Table Format)可以理解为元数据以及数据文件的一种组织方式,处于计算框架&…

Positive Technologies 利用 PT Cloud Application Firewall 保护中小型企业的网络资源

云产品按月订购,无需购买硬件资源 PT Cloud Application Firewall 是 Positive Technologies 推出的首个用于保护网络应用程序的商用云产品。Web 应用层防火墙 (web application firewall, WAF) 现在可以通过 技术合作伙伴——授权服务商和云提供商以订购方式提供1…

浅析ChatGPT中涉及到的几种技术点

❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博…

PHPmail 发送邮件错误 550 的原因是什么?

电子邮件错误消息链接到简单邮件传输协议 (SMTP),这是一组发送和接收电子邮件的标准化规则。因此,它也称为 SMTP 550 错误代码。在某些情况下,电子邮件错误 550 是由收件人一方的问题引起的。 以下是电子邮件错误 550 的一些可能原因&#x…

华为数通HCIP 821BGP 知识点整理

个人名片: 🐼作者简介:一名大三在校生,喜欢AI编程🎋 🐻‍❄️个人主页🥇:落798. 🐼个人WeChat:hmmwx53 🕊️系列专栏:🖼️…

苹果(Apple)公司的新产品开发流程(一)

目录 简介 ANPP CSDN学院推荐 作者简介 简介 苹果这家企业给人的长期印象就是颠覆和创新。 而流程跟创新似乎是完全不搭边的两个平行线: 流程是一个做事的标准,定义了权力的边界,对应人员按章办事;而创新的主旋律是发散&am…

【运维篇】5.4 Redis 并发延迟检测

文章目录 0.前言Redis工作原理可能引起并发延迟的常见操作和命令并发延迟检测分析和解读监控数据:优化并发延迟的策略 1. 检查CPU情况2. 检查网络情况3. 检查系统情况4. 检查连接数5. 检查持久化 :6. 检查命令执行情况 0.前言 Redis 6.0版本之前其使用单…

【代码随想录】算法训练计划27

回溯 1、39. 组合总和 题目: 给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。 candidates 中的…

力扣C++学习笔记——C++ assign全面解析

cassign是一个C20标准中新增的头文件,主要提供了assign函数,用于将一个容器内的元素按照特定规则赋值到另一个容器中。它是STL容器操作的重要一环,具有高效、简洁、易用的特点。 assign函数有多个版本,一般使用的是容器类型相同或…

CSDN每日一题学习训练——Python版(N皇后 II、买卖股票的最佳时机 II、编程通过键盘输入每一位运动员)

版本说明 当前版本号[20231120]。 版本修改说明20231120初版 目录 文章目录 版本说明目录N皇后 II题目解题思路代码思路参考代码 买卖股票的最佳时机 II题目解题思路代码思路参考代码 编程通过键盘输入每一位运动员题目解题思路代码思路参考代码 N皇后 II 题目 n 皇后问题…

uvm环境获取系统时间的方法和使用案例

背景: 有时候我们想统计一下验证环境中某个步骤总共花费了多少时间,有什么比较方便的方法呢,利用$realtime理论上也是能做到的,不过这个和timescale绑定起来了,需要手动换算成单位是秒的数,现在提供一种利用…

最强英文开源模型Llama2架构与技术细节探秘

prerequisite: 最强英文开源模型LLaMA架构探秘,从原理到源码 Llama2 Meta AI于2023年7月19日宣布开源LLaMA模型的二代版本Llama2,并在原来基础上允许免费用于研究和商用。 作为LLaMA的延续和升级,Llama2的训练数据扩充了40%,达到…

C语言——写一个函数,每调用一次这个函数,就会将num的值增加1

#define _CRT_SECURE_NO_WARNINGS 1#include<stdio.h>void Add(int* p) {(*p); // 的优先级高于* } int main() {int num0;Add(&num);printf("第一次调用:num %d\n",num);Add(&num);printf("第二次调用:num %d\n",num);Add(&num);p…

Python如何实现原型设计模式?什么是原型设计模式?Python 原型设计模式示例代码

什么是原型&#xff08;ProtoType&#xff09;设计模式&#xff1f; 原型模式&#xff08;Prototype Pattern&#xff09;是一种创建型设计模式&#xff0c;旨在通过复制现有对象来创建新对象&#xff0c;而无需通过标准的构造方式。它允许我们基于现有对象创建新对象&#xf…

数电实验-----实现74LS153芯片扩展为8选1时间选择器以及应用(Quartus II )

目录 一、74LS153芯片介绍 管脚图 功能表 二、4选1选择器扩展为8选1选择器 1.扩展原理 2.电路图连接&#xff08;Quartus II &#xff09; 3.仿真结果 三、8选1选择器的应用 1.三变量表决器 2.奇偶校验电路 一、74LS153芯片介绍 74ls153芯片是属于四选一选择器的芯片。…

你听说过“消费多少返利多少的”模式吗?

今天分享一个新的销售套路&#xff0c;看懂套路奋斗节约3年&#xff0c;你听说过“消费多少返利多少的”模式吗&#xff1f; 消费报销模式就是消费者在平台的消费&#xff0c;根据贡献度和活跃度平台去把之前消费的模式&#xff0c;给你返本了甚至还额外给你补贴奖励&#xff…

BP神经网络原理与如何实现BP神经网络

本文部分图文来自《老饼讲解-BP神经网络》bp.bbbdata.com 目录 一、BP神经网络的背景生物学原理 二、BP神经网络模型 2.1 BP神经网络的结构 2.2 BP神经网络的激活函数 三、BP神经网络的误差函数 四、BP神经网络的训练 4.1 BP神经网络的训练流程 4.2 BP神经网络的训练流…

1.索引的本质

索引是帮组MYSQL高效获取数据的排好序的数据结构 二叉树 二叉树是树节点的度不大于2的有序树。它是一种最简单最重要的树。 二叉树的左节点始终小于父节点。二叉树的有节点始终大于等于父节点 对于单边递增的数据&#xff0c;二叉树会变成链表的形式。这个时候查询不会减少次数…

使用cli批量下载GitHub仓库中所有的release

文章目录 1\. 引言2\. 工具官网3\. 官方教程4\. 测试用的网址5\. 安装5.1. 使用winget安装5.2. 查看gh是否安装成功了 6\. 使用6.1. 进行GitHub授权6.1.1. 授权6.1.2. 授权成功6.2 查看指定仓库中的所有版本的release6.2.1. 默认的30个版本6.2.2. 自定义的100个版本6.3 下载特定…